Verhalten ganzrationaler Funktionen im Unendlichen
Gegeben ist eine ganzrationale Funktion mit dem entsprechenden Graphen.
Um sich ein Bild von dem Verlauf des Graphen einer ganzrationalen Funktion zu machen, untersucht man, wie sich die Funktion für sehr große und sehr kleine Werte von x verhält.
Durch Bewegen der Schieberegler lassen sich die Koeffizienten a, b und c sowie die Potenzen n1, n2 und n3 der ganzrationalen Funktion verändern.
Aufgabe 1: Beobachte die Auswirkungen auf die Funktionswerte f(x) für sehr kleine und sehr große x-Werte, die sich aus der Veränderung der Koeffizienten und Potenzen ergeben.
TIPP: Nutze die Zoomfunktion und verändere zunächst nur die Koeffizienten.
Aufgabe 2: Formuliere aus deinen Beobachtungen heraus, wie man am Funktionsterm einer ganzrationalen Funktion deren Verhalten für größer und kleiner werdende x-Werte allgemein erkennen kann.
TIPP: Man unterscheidet 4 Fälle.