GeoGebra
  • Create Lesson
GeoGebra
  • Home
  • News Feed
  • Resources
  • Profile
  • People
  • Classroom
  • App Downloads
About GeoGebra
Contact us: office@geogebra.org
Terms of Service – Privacy – License

© 2022 GeoGebra

Eigenvalue, eigenvector-geometric interpretation in R2

Author:
kupanpal
u is an eigenvector of matrix A if its image through A (i.e. A*u), is collinear with u. The corresponding eigenvalue -lambda- is the ratio of the (components of the) vectors Au and u. Because the vectors are collinear, the absolute value of lambda measures the ratio between the lengths of the vectors Au and u.

New Resources

  • Bar Graph
  • Organic Ellipse
  • Prime and Composite Numbers
  • Water Molecule
  • Open Middle: Horizontal and Vertical Distances (V1)

Discover Resources

  • constraints
  • Conic Section Exploration
  • Proportional Segments Using Ratios
  • Riemann sums
  • Matrices and Determiners

Discover Topics

  • Logarithmic Functions
  • Mode
  • Incircle or Inscribed Circle
  • Cosine
  • Power Functions

GeoGebra

  • About
  • Partners
  • GeoGebra on Tests
  • News Feed
  • App Downloads

Apps

  • Calculator Suite
  • Graphing Calculator
  • 3D Calculator
  • CAS Calculator
  • Scientific Calculator

Resources

  • Classroom Resources
  • Learn GeoGebra
  • Classroom
  • Geometry
  • Notes
  • Terms of Service Privacy License
  • Facebook Twitter YouTube