Google Classroom
Google Classroom
GeoGebra
GeoGebra Classroom
Sign in
Search
Google Classroom
Google Classroom
GeoGebra
GeoGebra Classroom
GeoGebra
Home
Resources
Profile
Classroom
App Downloads
パップスの問題(放物線)
Author:
Bunryu Kamimura
Topic:
Parabola
パップスの問題
パップスは、 「一点からm+n本の直線に垂線を下ろして、m本に下した垂線の長さの積と、 n本に下した垂線の長さの積の比を一定ならしめるとき、その点の軌跡を求めよ。」 という問題を出した。 デカルトは、m=1、n=2の場合は放物線になることを座標を使って簡単に解いた。 これは放物線が二次関数になることを示したことになる。 パップスの問題はデカルトを座標へと導く指標だったのだ。 パップスには座標が見えていたのかもしれない。
GeoGebra
3本の直線と言うと空間座標がイメージされる。z=cxyという単純な曲面を示している。
GeoGebra
New Resources
円の伸開線
standingwave-reflection-fixed
フーリエ級数展開
等積変形2
standingwave
Discover Resources
割合の第2用法(平成26年度全国学力・学習状況調査算数A問題2)
不等式と整数の個数
軌跡2
一次関数の利用
リサージュ曲線
Discover Topics
Scalene Triangles
Quadratic Equations
Continuity
Geometric Distribution
Sphere