Google Classroom
Google Classroom
GeoGebra
GeoGebra Classroom
Abrir sesión
Buscar
Google Classroom
Google Classroom
GeoGebra
GeoGebra Classroom
Esquema
最小問題
垂足三角形が最短の周を持つことのシュワルツの証明
フェルマー点最小証明
ヤギの水飲み
二面に寄る最短コース
光の反射とホイヘンスの原理
垂心と垂足三角形
ワトソンの定理
シュタイナー点(4点)
最小問題
Autor:
Bunryu Kamimura
Tema:
Problemas de Optimización
,
Ortocentro
この証明のしかたがとてもエレガント。 図を動かしているだけでわかる!
垂足三角形が最短の周を持つことのシュワルツの証明
フェルマー点最小証明
ヤギの水飲み
二面に寄る最短コース
光の反射とホイヘンスの原理
垂心と垂足三角形
ワトソンの定理
シュタイナー点(4点)
Siguiente
垂足三角形が最短の周を持つことのシュワルツの証明
Nuevos recursos
sine-wave
standingwave-reflection
目で見る立方体の2等分
正17角形 作図 regular 17-gon
フーリエ級数展開
Descubrir recursos
Double planes
座標平面上での内分点
いろいろな曲線
球面上の2点間の弦の長さ
双対多面体(正二十面体,正十二面体)
Descubre temas
Rectas
Correlación
Cuadrado
Diferencia y pendiente
Esfera