Google Classroom
GeoGebra
GeoGebra Classroom
Abrir sesión
Buscar
Google Classroom
GeoGebra
GeoGebra Classroom
Esquema
最小問題
垂足三角形が最短の周を持つことのシュワルツの証明
フェルマー点最小証明
ヤギの水飲み
二面に寄る最短コース
光の反射とホイヘンスの原理
垂心と垂足三角形
ワトソンの定理
シュタイナー点(4点)
最小問題
Autor:
Bunryu Kamimura
Tema:
Problemas de Optimización
,
Ortocentro
この証明のしかたがとてもエレガント。 図を動かしているだけでわかる!
垂足三角形が最短の周を持つことのシュワルツの証明
フェルマー点最小証明
ヤギの水飲み
二面に寄る最短コース
光の反射とホイヘンスの原理
垂心と垂足三角形
ワトソンの定理
シュタイナー点(4点)
Siguiente
垂足三角形が最短の周を持つことのシュワルツの証明
Nuevos recursos
コイン投げと樹形図
平均変化率
対数螺旋
正17角形 作図 regular 17-gon 2
二次曲線と離心率
Descubrir recursos
中3_4_正方形に潜む関数
テスト解説2017 11月
回転体の体積
立方体の展開図
y=ax^2の変域について考えよう(2)
Descubre temas
Funciones exponenciales
Esfera
Recta Tangente o Tangente
Baricentro
Simetría