Google Classroom
Google Classroom
GeoGebra
Classe GeoGebra
Se connecter
Chercher
Google Classroom
Google Classroom
GeoGebra
Classe GeoGebra
Contour
最小問題
垂足三角形が最短の周を持つことのシュワルツの証明
フェルマー点最小証明
ヤギの水飲み
二面に寄る最短コース
光の反射とホイヘンスの原理
垂心と垂足三角形
ワトソンの定理
シュタイナー点(4点)
最小問題
Auteur :
Bunryu Kamimura
Thème :
Problèmes d'Optimisation
,
Orthocentre
この証明のしかたがとてもエレガント。 図を動かしているだけでわかる!
垂足三角形が最短の周を持つことのシュワルツの証明
フェルマー点最小証明
ヤギの水飲み
二面に寄る最短コース
光の反射とホイヘンスの原理
垂心と垂足三角形
ワトソンの定理
シュタイナー点(4点)
Suivant
垂足三角形が最短の周を持つことのシュワルツの証明
Nouvelles ressources
フーリエ級数展開
接点の作る円は内接円
アステロイド
standingwave-reflection-free
斜めドップラー
Découvrir des ressources
オイラー線
example of non-convex function
(使用)中三二次関数利用p117
フェルマー点を考える(三角形の回転)
直方体の切断
Découvrir des Thèmes
Intersection
Théorie des Ensembles
Triangles
Volume
Fonctions Puissances