Aanmelden
Zoek
GeoGebra
Naar begin
Didactisch materiaal
Profiel
Klaslokaal
App Downloads
V=12 Cuboctahedron. Images: A critical points scheme for Generating uniformly distributed points on a sphere
Auteur:
Roman Chijner
Onderwerp:
Algebra
,
Analyse
,
Cirkel
,
Verschil en helling
,
Differentiaalrekenen
,
Differentiaalvergelijking
,
Vergelijkingen
,
Optimalisatieproblemen
,
Meetkunde
,
Grafiek
,
Snijpunt
,
Wiskunde
,
Bol
,
Oppervlak
,
Vectoren
A system of points on a sphere S of radius R “induces” on the sphere S
0
of radius R
0
three different sets of points, which are
geometric medians (GM)
-local
maxima
,
minima
and
saddle
points sum of distance function f(x). The angular coordinates of the spherical distribution of a system of points -
local minima
coincide with the original system of points.
Distribution of points Pi
,
test Point
,
Max
/
min
/
saddle
-
Critical points
on a sphere. Vectors ∇f and ∇g at these points. ● max Tetrakis hexahedron:
n=14
●
min Cuboctahedron:
n=12
●
sad Rhombicuboctahedron:
n=24
Distribution of points Pi
,
test Point
,
Max
/
min
/
saddle
-
Critical points
on a sphere. Vectors ∇f and ∇g at these points. ● max Tetrakis hexahedron:
n=14
●
min Cuboctahedron:
n=12
●
sad Rhombicuboctahedron:
n=24
Two-variable function f(φ,θ) over a rectangular region: - π ≤φ ≤ π; -π/2≤θ≤π/2.
Isolines and Intersection points of implicit functions over a rectangular region: - π ≤φ ≤ π; -π/2≤θ≤π/2.
Critical Points
Nieuw didactisch materiaal
גיליון אלקטרוני להעלאת נתוני בעיה ויצירת גרף בהתאם
Floch, fractal, iteration, custom tool.
apec
Free fall
koch tool
Ontdek materiaal
Aplication of coplanar concurrent force system
soal gpo sesi 3.3
Modul 12_Eksponen_Jhon ferizal_SMAN 1 Mempura
สามเหลี่ยมพีทาโกรัส
Confirmed Coronavirus Cases in Countries
Ontdek onderwerpen
Veelhoeken
Omgeschreven cirkel
Lichamen
Zwaartepunt
Ingeschreven cirkel