Google Classroom
GeoGebra
Classe GeoGebra
Se connecter
Chercher
Google Classroom
GeoGebra
Classe GeoGebra
GeoGebra
Accueil
Ressources
Profil
Classroom
Téléchargements d'applications
Die zum Fermat-Problem gehörende Maximumaufgabe
Auteur :
Roman Chijner
Thème :
Aire
,
Calcul
,
Cercle Circonscrit
,
Constructions
,
Coordonnées
,
Géometrie
,
Intersection
,
Triangles Isocèles
,
Points Spéciaux
,
Triangles
https://did.mat.uni-bayreuth.de/geonet/beispiele/minimum/ ... Mit der Lösung des Fermat-Problems:
Gibt es in jedem Dreieck einen Punkt F so, daß die Summe der Entfernungen von F zu den drei Eckpunkten minimal ist?
ist somit gleichzeitig das
maximale umbeschriebene gleichseitige Dreieck
bestimmt und umgekehrt. Ein Minimum- und ein Maximumproblem, die so miteinander zusammenhängen, heißen zueinander dual. Das Fermat-Problem und die Bestimmung des maximalen gleichseitigen Umdreiecks können somit als die Urväter der Dualitätsprobleme der Optimierungstheorie angesehen werden.
GeoGebra
Nouvelles ressources
Identifying Sine, Cosine, Tangent Ratios in Right Triangles (Quick)
Slopes of Perpendicular Lines
Tanzanian Ngoma - Model 3
Equilateral Triangle Cross Sections
Untitled
Découvrir des ressources
Perimeter v. Area
practice 1
constuction of a circumcircle of a triangle
teykt
Découvrir des Thèmes
Solides de l'Espace
Rotation
Fonctions définies par Morceaux
Cercle Inscrit ou Circonscrit
Quadrilatères