Sign in
Search
GeoGebra
Home
Resources
Profile
Classroom
App Downloads
V=20 Dodecahedron. Images: A critical points scheme for Generating uniformly distributed points on a sphere
Author:
Roman Chijner
Topic:
Algebra
,
Calculus
,
Circle
,
Difference and Slope
,
Differential Calculus
,
Differential Equation
,
Equations
,
Optimization Problems
,
Geometry
,
Function Graph
,
Intersection
,
Linear Programming or Linear Optimization
,
Mathematics
,
Sphere
,
Surface
,
Vectors
A system of points on a sphere S of radius R “induces” on the sphere S0 of radius R0 three different sets of points, which are
geometric medians (GM)
-local
maxima
,
minima
and
saddle
points sum of distance function f(x). The angular coordinates of the spherical distribution of a system of points -
local minima
coincide with the original system of points.
Distribution of points Pi
,
test Point
,
Max
/
min
/
saddle
-
Critical points
on a sphere. Vectors ∇f and ∇g at these points. max:
Icosahedron
min:
Dodecahedron
sad:
Icosidodecahedron
Distribution of points Pi
,
test Point
,
Max
/
min
/
saddle
-
Critical points
on a sphere. Vectors ∇f and ∇g at these points. max:
Icosahedron
min:
Dodecahedron
sad:
Icosidodecahedron
Two-variable function f(φ,θ) over a rectangular region: - π ≤φ ≤ π; -π/2≤θ≤π/2.
Intersection points of implicit functions over a rectangular region: - π ≤φ ≤ π; -π/2≤θ≤π/2.
Isolines and Intersection points of implicit functions over a rectangular region: - π ≤φ ≤ π; -π/2≤θ≤π/2.
Critical Points
New Resources
Pendulum Snake
Constructing the Angle Bisector + Practice
Let's fly!
Sticky point to list of points
Vector Valued Functions
Discover Resources
Randomized Pen
Trapezoid Median (Midsegment) Action!
Example2
Points and the like
Five by Five
Discover Topics
Vectors 3D (Three-Dimensional)
Combinatorics
Fractions
Cosine
Conic Sections