Kreise auf Hyperboloiden
6. März 2020 Diese Aktivität ist eine Seite des geogebra-books Moebiusebene
Auch auf 2-schaligen nicht rotationssymmetrischen Hyperboloiden gibt es mindestens 2 Scharen von Kreisen: geeignete doppelt-berührende Kugeln schneiden die Fläche in 2 Kreisen! Für rotationssymmetrische Hyperboloide berühren manche Kugeln die Fläche in Kreisen! Da möbiusgeometrisch "Geraden" auch Kreise sind, liegen auf 1-schaligen Hyperboloiden stets mindestens 2 Scharen von Kreisen, im Falle der Rotations-Symmetrie sind es sogar 3 Kreisscharen. Diese bilden dann ein 6-Eck-Netz (hexagonal web, 3-web of circles). Das Ellipsoid oben ist nur fast eine Kugel: der Grund für die Wahl ist eine einfachere Darstellung des Hyperboloids! Siehe dazu auch die Aktivität zuvor!