How to plot strange attractors

Topic:
Equations

Description

With the following GeoGebra script you can plot the numerical solution of systems of differential equations. The command NSolveODE() is used. More info: https://wiki.geogebra.org/en/NSolveODE_Command The 3D graphics view must be opened!

GeoGebra script

##Parameters## d=10 b=8/3 p=28 ##System of differential equations: Lorenz attractor## x'(t,x,y,z)=d*(y-x) y'(t,x,y,z)=x*(p-z)-y z'(t,x,y,z)=x*y-b*z ##Initial Condition## x0=1 y0=1 z0=1 ##Numerical solution## NSolveODE({x', y', z'}, 0, {x0, y0, z0}, 20) ##Calculate length of solution 1## len = Length(numericalIntegral1) ##Define points from the solution## L_1=Sequence( (y(Point(numericalIntegral1, i)), y(Point(numericalIntegral2, i)), y(Point(numericalIntegral3, i))), i, 0, 1, 1 / len ) ##Draw curve## f=Polyline(L_1) ##Finally, you need to hide numericalIntegra1, numericalIntegra2, numericalIntegra3, and L_1##

Result

Result