Sign in
Search
Outline
Preliminary Extension 1 Mathematics
Equal arcs on circles of equal radii subtend equal angles at the centre, and conversely, equal angles at the centre subtend equal arcs on circles of equal radii.
Preliminary Extension 1 Mathematics
Author:
Jashan Mahl
Topic:
Mathematics
Assignment
Equal arcs on circles of equal radii subtend equal angles at the centre, and conversely, equal angles at the centre subtend equal arcs on circles of equal radii.
Next
Equal arcs on circles of equal radii subtend equal angles at the centre, and conversely, equal angles at the centre subtend equal arcs on circles of equal radii.
New Resources
Constructing an Isosceles Triangle with Given Side + Activities
bewijs stelling van Pythagoras
Proving Triangles Congruent (2): One Step Transformations
רישום חופשי
Monge's Theorem
Discover Resources
Factors Number - Forum Example
AA room math
massengale
Modul 2_Segiempat_Indah Eko Cahyani_SMK N 1 Slawi
Modul 16-B_Jhon ferizal_SMAN 1 Mempura
MODUL 6D_DEWI PUSPA SARI_SMPN25 BATAM
Discover Topics
Rational Numbers
Scatter Plot
Circumcircle or Circumscribed Circle
Median Line
Tangent Line or Tangent