Vector Projections in 2D by Mohamed Habib
Imagine it's a clear day and the sun is shining down upon the Earth.
Let's pretend that the line containing vector v is the ground.
Let's pretend that vector u is a stick with one endpoint on the ground and one endpoint in the air.
Since the sun is shining brightly, vector u would therefore cast a shadow on the ground, no?
The projection of u onto v is another vector that is parallel to v and has a length equal to what vector u's shadow would be (if it were cast onto the ground).
Instructions:
- Move the three white dots to change the vector u and v's components.
- Drag the "slide me" slider to the right to cast the Projection (shadow).
- On the right side you will see how to compute the Vector projection in details.
- Manually try one on your own and then check the answer.
- Is the Projection a vector or a scalar?
- what if both vectors are Orthogonal?
Write down your own notes about the subject.