Parallele Geraden
Aufgabe 1
a) Stelle den Punkt D so ein, dass die Geraden g und h parallel sind; gib seine Koordinaten an. b) Was muss für die Richtungsvektoren von g und h gelten, damit sie parallel sind? c) Zeige durch Rechnung, dass g und h parallel sind, wenn D die in a) angegebenen Koordinaten hat.
Aufgabe 2
Stelle durch Rechnung fest, ob die Geraden g und h parallel sind. g: A = (-5 | 2), B = (20 | 12) h: C = (2 | -1), D = (-13 | -10)
Spezialfall
Aufgabe 3
Stelle den Punkt C so ein, dass er auf der Geraden g liegt. Da die Richtungsvektoren parallel sind, sind g und h dann identisch. a) Lies die Koordinaten von C ab. b) Zeige durch Rechnung, dass C tatsächlich auf g liegt (und nicht etwa 0,001 mm daneben, was man mit freiem Auge ja nicht erkennen könnte).
Aufgabe 4
a) Welche der Geraden sind parallel?
b) Welche der Geraden sind identisch?