Google Classroom
GeoGebraGeoGebra Classroom

Trayectoria balística

Esta actividad pertenece al libro de GeoGebra El dominio del Tiempo. Esta animación simula la trayectoria hacia un objetivo en tiempo real, despreciando la resistencia del aire, de un proyectil con una velocidad inicial v0 dada. La animación no hace uso de fórmulas (ni ecuaciones ni cálculo diferencial), solo realiza las variaciones necesarias en los vectores que dirigen el movimiento. En el punto A se sitúa un cañón y en el punto B el objetivo. Puedes mover ambos puntos. Esta animación sigue los mismos pasos de la actividad Movimiento parabólico, solo que ahora el valor inicial v0 del vector velocidad v se introduce en dos etapas: primero su módulo (que corresponde a la velocidad propia del cañón empleado) y luego su dirección y sentido (es decir, se apunta el cañón intentando hacer blanco en el objetivo B). Mueve el punto verde, intentando estimar la dirección adecuada, y luego pulsa el botón . Si no quieres esperar el tiempo del recorrido, activa la casilla Arco teórico para ver la trayectoria que seguirá el proyectil. Salvo que el punto B se sitúe justo en el límite del alcance del cañón, o hay dos ángulos de disparo posibles o no hay ninguno. En el primer caso, puedes ver ambas trayectorias activando la casilla Arcos para diana. En el segundo caso, B se encuentra fuera del alcance del cañón y aparecerá un mensaje en ese sentido.
GUION DEL DESLIZADOR anima # Calcula los segundos dt transcurridos; para ello, suma un segundo si t1(1) < tt Valor(tt, t1(1)) Valor(t1, Primero(TomaTiempo(), 3)) Valor(dt, (t1(1) < tt) + (t1(1) tt)/1000) # Mueve M Valor(v, v + dt g) Valor(M, Si(y(M + dt v)>0, M + dt v, Interseca(Recta(M, M + v), EjeX))) # Añade la posición M al registro para el rastro poligonal y controla el final Valor(reg, Añade(reg, M)) IniciaAnimación(anima, y(M) > 0 ∧ abs(M − B) > abs(A − B)/100) Autor de la actividad y construcción GeoGebra: Rafael Losada.