Kriterien für Extrem-, Sattel- und Wendepunkte
Die grüne Kurve zeigt den Graph einer ganzrationalen Funktion.
Die Tangente "wandert" jeweils in der Umgebung eines der markierten Punkte P1 bis P7, mit dem Schieberegler "Auswahl" kannst du den Punkt ändern.
Beschreibe zu den Punkten P1, P3, P5 und P7 wie sich die Steigung der Tangente (also der Ableitungswert f'(x)) verhält, wenn der Punkt T, an dem die Tangente gezeichnet wird, von links nach rechts durch jeden dieser Punkte hindurch wandert.
Mache das gleiche anschließend für P2, P4, P6.
Skizziere außerdem qualitativ den Verlauf der Ableitungsfunktion f'(x) im Intervall [-5;3].
Entwickle eine Vorgehensweise, mit der man die verschiedenen Fälle unterscheiden kann, insbesondere den Unterschied zwischen P3 und P1, P5.