Google Classroom
GeoGebraClasse GeoGebra

Radicación de números complejos

Ahora que conocemos la unidad imaginaria , siempre podremos obtener todas la raíces cualquier número, independientemente de si el radicando es positivo o negativo; o si el índice es par o impar. En primer lugar, usaremos la siguiente applet para verificar que cuando es un número real, las raíces indicadas con una x roja son las que ya conocíamos. Caso : Si , las raíces son y , como ya sabemos. Si , las raíces son y , como ya sabemos. Si , las raíces son e , como vimos al principio del tema.

Cuestiones

1. Obtén las raíces cuadradas de . ¿Qué ocurre? 2. Obtén las raíces cuadradas de .¿Qué ocurre? 3. ¿Qué tienen en común las raíces cuadradas de con las de ? 4. Obtén las raíces cúbicas de . ¿Qué ocurre? Comprueba que las raíces efectivamente resultan 1 al multiplicarse por sí mismas. 5. Obtén las raíces cúbicas de . ¿Qué ocurre? Verifica que efectivamente son raíces. 6. ¿Cuál es el resultado de aumentar el módulo de ? 7. ¿Qué geometría definen las raíces -ésimas de cualquier ?