Google Classroom
GeoGebraTarefa

Pythagoras tree Affine 3 for Juan Carlos

For Juan Carlos Ponce Campuzano post "Script: Pythagoras tree" With some knowledge of lineair algebra you could use affine transformations This time I projected directly in a 2D View from plane z=1. See more affine transformations in Nice to see Monique GOBRIAL using Plant Growing for her Balade-Fleurie-nuit Below is the creation script of this "Pythagoras tree Affine 3" z1=(z=1) #================================================ # Right click on z1 in the Algebra View and select "Create 2D View from z1" #================================================ P1 =( 0.5, 1, 1) P2 =(-0.5, 1, 1) P = Point(Semicircle(P2, P1)) Pol=Polygon({P1, P, P2,(-0.5, 0, 1),( 0.5, 0, 1)}) # Affine transformations (to create Right and Left branches) #================================================ vL=Vector(P2, P) vR=Vector(P, P1) tL=Vector((0,0,0), Midpoint(P, P2)) tR=Vector((0,0,0), Midpoint(P, P1)) L={{x(vL), -y(vL), x(tL)}, {y(vL), x(vL), y(tL)}, {0, 0, 1}} R={{x(vR), -y(vR), x(tR)}, {y(vR), x(vR), y(tR)}, {0, 0, 1}} Text = "Augmented matrices" TextL= FormulaText(L, true, true) TextR= FormulaText(R, true, true) # Create 8 levels of branches #================================================ N = 8 LN = Sequence(1,N) LM0={{{1,0,0}, {0,1,0}, {0,0,1}}} Execute[Zip["LM"+k+"=Join[Zip[{M*L, M*R}, M,LM"+(k-1)+"]]", k,LN]] Execute[Zip["LB"+k+"=Zip[ApplyMatrix[M, Pol], M, LM"+k+"]", k,LN]] # Settings #================================================ SetValue(P,(0, 1.5, 1)) SetColor(P, "Red") SetCaption(P, "Drag!") ShowLabel(P, true) M = Slider(0, N, 1, 1, 160, false, true, false, false) SetValue(M,N) SetConditionToShowObject(P1, false) SetConditionToShowObject(P2, false) SetConditionToShowObject(vR, false) SetConditionToShowObject(vL, false) Execute(Zip("SetConditionToShowObject(LB"+k+", "+k+"<=M)", k, LN)) SetCoords[TextL, 0, -0.25] SetCoords[TextR, 0, -1.5]