Constructing an Isosceles Triangle with Given Side + Activities
Try It Yourself...
Verify with GeoGebra
Describe the properties of isosceles triangles.
Referring to the construction above, explain why the triangle you obtain is isosceles.
Let be an isosceles triangle with vertex . On the extension of , beyond , choose a point , and on the extension of , beyond , choose a point such that . (a) Prove that (b) The extensions of and intersect at a point . Prove that is isosceles. (c) Draw the ray . Prove that . (d) Prove that the ray is the bisector of .
True or False?
If a statement is false, correct it to make it true, or provide a counterexample.