Google Classroom
GeoGebraGeoGebra Klaslokaal

velocità in un intervallo e velocità in un punto

La funzione f(x)=ax varia in genere (non lo varia solo per a=1) il suo valore al variare della x. Nell'intervallo [0,h] dell'asse delle ascisse essa varia da f(0)=1 a f(h); quindi varia di f(x+h)-f(x) con x=0, quindi di: f(h)-f(0). La variazione dell'ascissa si indica in genere con Δx, quella dell'ordinata con Δy. Pertanto, siccome il primo estremo dell'intervallo è 0, si ha: Δx=h-0=h e Δy=f(h)-f(0). Il rapporto v(a,h) := è detto "velocità di crescita" di f nell'intervallo [0,h]. Il suo limite: v(a) := è detto "velocità istantanea" (o semplicemente "velocità") di f in x=0. La necessità del limite per h→0 nasce dal fatto che (come puoi verificare agendo sullo slider h ponendolo al valore nullo) per h=0 tale rapporto perde di significato (diventerebbe 0/0).

Come nasce il numero di Nepero

Cliccando sul pulsante [h→0] passi da v(a,h) a v(a), se adesso aggiusti il valore di a in modo da avere v=1 otterrai come valore di a proprio un'approssimazione del numero di Nepero e. Pertanto e è la base della funzione esponenziale che in x=0 ha velocità pari a 1. Che approssimazione ti appare come valore di a svolgendo i due passi (clic sul pulsante + aggiustamento di a fino ad avere v=1) ?

Come hai potuto notare ci sono diversi valori di approssimazione per il numero di Nepero. Ciò dipende dal fatto che Geogebra non ha effettivamente potuto svolgere il limite per h che tende a 0 (si è limitatato ha porre h ad un valore piccolo, e precisamente 0.001) e dal fatto che ci vorrebbe un'espressione matematica che esprimesse effettivamente v(a) per poter poi procedere a risolvere l'equazione v(a)=1, sempre che tale risoluzione poi sia effettivamente possibile. Alla fine di questa attività scoprirai che una tale funzione esiste, e si indica con ln(x); ossia si ha che v(a)=ln(a). Tuttavia questa funzione "ln" (che ti preannuncio si chiama "logaritmo naturale") è proprio definita a partire dal numero di Nepero (o, più avanzatamente, tramite il calcolo integrale). Pertanto non la si può trovare se non si è prima definito il numero e stesso.