Sign in
Search
GeoGebra
Home
Resources
Profile
Classroom
App Downloads
V=6 Octahedron. Images: A critical points scheme for Generating uniformly distributed points on a sphere
Author:
Roman Chijner
Topic:
Calculus
,
Circle
,
Difference and Slope
,
Differential Calculus
,
Differential Equation
,
Equations
,
Optimization Problems
,
Geometry
,
Function Graph
,
Intersection
,
Linear Programming or Linear Optimization
,
Mathematics
,
Sphere
,
Surface
,
Vectors
A system of points on a sphere S of radius R “induces” on the sphere S0 of radius R0 three different sets of points, which are
geometric medians (GM)
-local
maxima
,
minima
and
saddle
points sum of distance function f(x). The angular coordinates of the spherical distribution of a system of points -
local minima
coincide with the original system of points.
Distribution of points P
i,
test Point
,
Max
/
min
/
saddle
-
Critical points
on a sphere. Vectors ∇f and ∇g at these points.
max:
Cube
min:
Octahedron
sad:
Cuboctahedron
New Resources
Exploding cube
Rolling Triangle
Floch, fractal, iteration, custom tool.
The Cosine Formula - Proof Without Words
Domino Effect
Discover Resources
Motion of a stone thrown vertically upwards
Řez krychle, záludný případ
การบวกจำนวนเต็มบวกกับจำนวนเต็มลบ
cube g 11
jgfg
Discover Topics
Exponential Functions
Congruence
Parallelogram
Ellipse
Polygons