Google Classroom
Google Classroom
GeoGebra
Classe GeoGebra
Se connecter
Chercher
Google Classroom
Google Classroom
GeoGebra
Classe GeoGebra
GeoGebra
Accueil
Ressources
Profil
Classroom
Téléchargements d'applications
Two Sides and an Angle Not Between Them
Auteur :
John McLain
Are two congruent sides and an angle not between them enough for congruent triangles?
GeoGebra
Given the original values, how many triangles are possible?
𝜋
Vérifier ma réponse
Keeping the other values the same, make a = 5.5. How many triangles are possible now?
𝜋
Vérifier ma réponse
Keeping the other values the same, how big would you need to make "a" so that you can only make one triangle?
𝜋
Vérifier ma réponse
Keeping the other values the same, make a = 5. How many triangles are possible now?
𝜋
Vérifier ma réponse
If the blue angle is acute, do you think two congruent sides and the angle not between them ALWAYS forces triangle to be the same?
Cochez votre réponse ici
A
Yes
B
No
Vérifier ma réponse (3)
Make the blue angle ninety degrees. Are there any side lengths that will produce more than one triangle?
Cochez votre réponse ici
A
Yes
B
No
Vérifier ma réponse (3)
If the blue angle is right, do you think two congruent sides and the angle not between them ALWAYS forces triangle to be the same?
Cochez votre réponse ici
A
Yes
B
No
Vérifier ma réponse (3)
Make the blue angle 120 degrees. Are there any side lengths that will produce more than one triangle?
Cochez votre réponse ici
A
Yes
B
No
Vérifier ma réponse (3)
If the blue angle is obtuse, do you think two congruent sides and the angle not between them ALWAYS forces triangle to be the same?
Cochez votre réponse ici
A
Yes
B
No
Vérifier ma réponse (3)
Nouvelles ressources
GGB is Awesome!
From Polar to Cartesian Coordinates
函數的奇偶性
Untitled
Area Between Two Curves
Découvrir des ressources
Rogers Perpendicular Bisector
Chapter 5 Constructions
Question 3
Função Quadrática
Coloreando el mapa
Découvrir des Thèmes
Vecteurs 2D (dans le Plan)
Soustraction
Triangles Rectangles
Diagramme en Barres
Pyramide