Reflection Exploration

Author:
Ben Graber
Reflection Exploration Use the applet below to explore the properties of reflecting a polygon over different lines on the coordinate plane.
1) How far are the vertices of the original polygon from the x-axis? When you reflect the polygon over the x-axis, how far are the new vertices from the x-axis? How do this distances compare? How do the x-coordinates of the new vertices compare with the x-coordinates of the original vertices? How about the y-coordinates? 2) How far are the vertices of the original polygon from the y-axis? When you reflect the polygon over the y-axis, how far are the new vertices from the y-axis? How do this distances compare? How do the x-coordinates of the new vertices compare with the x-coordinates of the original vertices? How about the y-coordinates? 3) If you reflect the polygon over the horizontal line y=4, how do the coordinates change? How is this similar to reflecting over the x-axis? How is it different from reflecting over the x-axis? 4) Make a prediction about where the new image of the polygon will be located if you reflect it over the vertical line x=5. Test your prediction. Was your prediction correct? If it was not, why was your prediction incorrect? 5) If you reflect the polygon over the diagonal line y=x, how is this similar to reflecting over a horizontal or vertical line? How is it different?