Google Classroom
GeoGebraGeoGebra Classroom

Modulul (VALOAREA ABSOLUTĂ) a unui număr real

Instrucțiuni: Trageți cercul albastru pentru a schimba numărul, afișat cu roșu. Valoarea absolută (modulul) a acelui număr, este afișată cu negru.

DEFINIȚIA

Modulul unui număr real este distanța de la origine la reprezentarea numărului pe axa numerelor reale

PROPRIETĂȚI:

x | = x, oricare ar fi x ≥ 0; | x | = - x, oricare ar fi x < 0; | x | ≥ 0 , oricare ar fi x ∈ ℝ; | x | = 0 ⇔ x = 0 | -x | = | x |,oricare ar fi x ∈ ℝ;  = | x |,oricare ar fi x ∈ ℝ; | x + y | ≤ | x | + | y |, oricare ar fi x ∈ ℝ, y ∈ ℝ; | x | · | y | = | x · y |, oricare ar fi x ∈ ℝ, y ∈ ℝ; , oricare ar fi x ∈ ℝ, y ∈ ℝ*;

Stabilește valoarea de adevăr:

=

Puneți răspunsul aici
  • A
  • B
Verifică răspunsul (3)

Alege răspunsul corect:

Puneți răspunsul aici
  • A
  • B
  • C
  • D
Verifică răspunsul (3)

Stabilește valoarea de adevăr:

Puneți răspunsul aici
  • A
  • B
Verifică răspunsul (3)

Stabilește valoarea de adevăr:

Puneți răspunsul aici
  • A
  • B
Verifică răspunsul (3)

Întrebări:

Valorile absolute ale numerelor reale sunt întotdeauna pozitive? Modulul unui număr poate fi negativ? Modulul unui număr poate să fie zero? Când este un număr este egal cu valoarea lui absolută? Când un număr și modulul său sunt opuse? Ce numere au valoarea absolută egală cu 5? Sunt numere care au valoarea absolută egală cu -5? Ce numere au valoarea absolută egală cu 0?