Verschieben entlang der x-Achse von ganzrationalen Funktionen

Das Verschieben entlang der x-Achse kennst du bereits von den Potenzfunktionen. Arbeitsauftrag 1 Übertrage dein Wissen nun auf ganzrationale Funktionen und versuche den Graphen der unten abgebildeten Funktion f mit f(x)=x³ - 3x a) um 2 Einheiten (in x-Richtung) nach rechts zu verschieben b) um 3 Einheiten (in x-Richtung) nach links zu verschieben indem du jeweils eine eigene Funktion g(x) und h(x) im Eingabefeld neben dem "+"Zeichen eingibst (am Ende sollen 3 Graphen zu sehen sein: "hoch" kann man durch Drücken der ^-Taste erreichen). ). Hinweis: Überprüfe durch genaues Hinsehen, ob die von dir eingegeben Funktionsgleichung wirklich die gewünschte Streckung/Stauchung bewirkt hat. Wenn nicht, versuche es erneut mit einer anderen Funktionsgleichung.

Arbeitsauftrag 2 Formuliere eine Regel: Der Graph einer ganzrationalen Funktion wird entlang der x-Achse um d Einheiten verschoben ...

Arbeitsauftrag 3 Überprüfe deine Vermutung, indem du deine Regel auf den abgebildeten Graphen der Funktion f mit f(x)= - 3x² + 1 überträgst und versuchst, den Graphen a) um 2 Einheiten (in x-Richtung) nach rechts zu verschieben b) um 3 Einheiten (in x-Richtung) nach links zu verschieben indem du jeweils eine eigene Funktion g(x) und h(x) im Eingabefeld neben dem "+"Zeichen eingibst (am Ende sollen 3 Graphen zu sehen sein).