Google Classroom
GeoGebraGeoGebra Classroom

gedämpfte Schwingungen

3 mögliche Fälle einer gedämpften Schwingung

In folgendem Applet können Sie mit der Lösung einer gedämpften Federschwingung (D: Federhärte, m: Masse, k: Proportionalitätskonstante der geschwindigkeitsabhängigen Reibungskraft) spielen. a) Finden Sie durch Variation der Parameter D, m und k mindestens einen Spezialfall der gedämpften Schwingung. b) Versuchen Sie diesen anschaulich zu beschreiben: Was macht das Federpendel in diesem Fall? c) Versuchen Sie eine mathematische Bedingung zwischen D, m und k aufzustellen, die für diesen Fall notwendig ist. (Schwer!) d) Versuchen Sie diesen Fall physikalisch zu begründen: Warum kommt es zu diesem Fall?