Applet. Geometric centers on a sphere "induced" by moving points in three-dimensional space.
This applet is used to study the distribution of geometric centers on a sphere of radius R, „induces“ by the discrete sample of movable points in the 3-D space.
Description in https://www.geogebra.org/m/nge6gawt
![[size=85]-Settings plane, equalities from the Steiner theorem
-Two-variable function f(φ,θ) over a rectangular region: - π ≤φ ≤ π; -π/2≤θ≤π/2.
- Intersection Implicit Curves f'φ(φ, θ)=0; f'θ(φ,θ)=0 over a rectangular region φ∈[-π,π], θ∈[-0.5π,0.5π]
-Distribution of [color=#1e84cc]points Pi[/color] and their local [color=#ff0000]maxima[/color]/[color=#0000ff]minima[/color] and [color=#6aa84f]saddle[/color] -[color=#ff7700]critical[/color] points of distance sum function f(φ,θ) on a sphere + [color=#b45f06]test Point[/color]. Vectors ∇f and ∇g at these points.[/size]](https://stage.geogebra.org/resource/r3encdt3/Zi4P3x6cW9maWOZP/material-r3encdt3.png)
![[size=85]Distribution of points Pi, [color=#ff00ff]Cm[/color], [color=#ff0000]GCmax[/color] and [color=#0000ff]GC[/color][color=#0000ff]min[/color] on a sphere. Vectors ∇f and ∇g at these points.[/size]](https://stage.geogebra.org/resource/wfcjq3rw/asBKyvrpITqMrKyT/material-wfcjq3rw.png)
![[size=85]Two-variable function f(φ,θ) over a rectangular region: - π ≤φ ≤ π; -π/2≤θ≤π/2.[/size]](https://stage.geogebra.org/resource/jdzfkrqe/Bpkbf4phpbuA3YGy/material-jdzfkrqe.png)
![[size=85] Intersection Implicit Curves f'φ(φ, θ)=0; f'θ(φ,θ)=0 over a rectangular region φ∈[-π,π], θ∈[-0.5π,0.5π] [/size]](https://stage.geogebra.org/resource/sjtwz5pt/z4Uwlve9IpgvI9lZ/material-sjtwz5pt.png)