กำเนิดพาราโบลา
บทนิยามของพาราโบลา
พาราโบลา (parabola) คือเซตของจุดทั้งหมดในระนาบซึ่งห่างจากจุดที่ตรึงอยู่กับ F ที่จุดหนึ่ง
และเส้นตรง d ที่ตรึงอยู่กับที่เส้นหนึ่งเป็นระยะทางเท่ากัน
จุดที่ตรึงอยู่กับที่นี้ เรียกว่า โฟกัส (focus)
และเส้นตรงที่ตรึงอยู่กับที่นี้ เรียกว่า เส้นบังคับ หรือ ไดเรกตริกซ์ (directrix) ของพาราโบลา
คำชี้แจ้ง ให้นักเรียน
1. สร้างจุด C




การสร้างพาราโบลาโดยนิยาม ด้วยโปรแกรม Geogebra
คำชี้แจ้ง ให้นักเรียน
1. เลื่อนแถบเลื่อน และเลื่อนจุด P
2. พิจารณาระยะห่างระหว่างจุด P กับ จุดโฟกัส
และระยะห่างระหว่างจุด P กับไดเรกตริกซ์
3. ศึกษาความสัมพันธ์ในข้อ 2 และตอบคำถาม
พาราโบลา

ส่วนประกอบของพาราโบลา
1. เส้นตรงคงที่เรียกว่า ไดเรกตริกซ์ ของพาราโบลา จากรูปคือ เส้นตรง
2. จุดคงที่เรียกว่า โฟกัส ของพาราโบลา จากรูปคือ จุด
3. เส้นตรงที่ผ่านโฟกัสและตั้งฉากกับไดเรกตริกซ์เรียกว่า แกนสมมาตร ของพาราโบลา จากรูปคือ แกน
4. จุดที่พาราโบลาตัดกับแกนของพาราโบลาเรียกว่า จุดยอด ของพาราโบลา จากรูปคือ จุด
5. ส่วนของเส้นตรงที่ตัดพาราโบลาโดยผ่านโฟกัสขนานกับไดเรกตริกซ์
และตั้งฉากกับแกนสมมาตร เรียกว่า เลตัสเรกตัม (latus rectum) จากรูปคือ ส่วนของเส้นตรง จะได้ความยาวของเลตัสเรกตัมเท่ากับ