Verschieben der Normalparabel
Du kennst bereits die Normalparabel , dessen Graph hier grün eingezeichnet ist.
1. Verändere den Schieberegler d und beschreibe, wie sich der Graph der quadratischen Funktion ausgehend von der Normalparabel verändert:
.
Zeichne mithilfe der Normalparabel-Schablone die entstandenen Graphen in ein gemeinsames Koordinatensystem.
2. Gib eine Funktionsvorschrift für jeden Graphen an. Überprüfe deine Ergebnisse.
3. Welche Bedeutung hat der Parameter d für den Graphen der quadratischen Funktion? Gehe dabei von der Normalparabel als Ursprungsgraph aus.
4. Verändere den Schieberegler e und beschreibe, wie sich der Graph der quadratischen Funktion gausgehend von der Normalparabel verändert:
Zeichne mithilfe der Normalparabel-Schablone die entstandenen Graphen in ein gemeinsames Koordinatensystem.
5. Gib eine Funktionsvorschrift für jeden Graphen an. Überprüfe deine Ergebnisse.
6.. Welche Bedeutung hat der Parameter e für den Graphen der quadratischen
Funktion? Gehe dabei von der Normalparabel als Ursprungsgraph aus.
7. Verändere beide Schieberegler d und e, wie du magst. Gib die jeweilige Funktionsvorschrift des Graphen an. Überpüfe dein Ergebnis. Führe diesen Vorgang dreimal durch.
8. Erstelle einen eigenen Merkkasten zum Verschieben der Normalparabel. Bedenke dabei, wie ein Merkkasten aufgebaut ist und welche Aspekte enthalten sein müssen.