Google Classroom
GeoGebraGeoGebra Classroom

Escalado

Esta actividad pertenece al libro de GeoGebra Cambio de sistema de referencia. Comando GeoGebra asociado: no hay, al menos de momento. La última transformación afín invertible es el escalado. De nuevo, veremos solo el caso de transformación lineal, ya que la correspondiente transformación afín no es más que una composición del escalado con las traslaciones. Como las transformaciones afines invertibles forman el grupo afín, cualquier cambio de sistema de referencia {O, a, b, c} corresponderá a una composición de isometrías, cortes y escalados. La matriz de cambio de base correspondiente a un escalado lineal es:

donde ka, kb y kc son los factores de escala de los vectores a, b y c, respectivamente. Es decir, a = ka i, b = kb j y c = kc k. Observemos que se conserva la dirección y ortogonalidad de los vectores i, j y k, pero no su módulo. Algunos casos particulares son:
  • ka>1, kb=1, kc=1: se produce un estiramiento respecto al eje X. El área del cuadrado unidad aumenta en un factor ka. (Lo análogo ocurre con kb>1 y kc>1 respecto a los ejes Y, Z.)
  • ka<1, kb=1, kc=1: se produce una compresión respecto al eje X. El área del cuadrado unidad disminuye en un factor ka. (Lo análogo ocurre con kb<1 y kc<1 respecto a los ejes Y, Z.)
  • kc=kb=ka>1: se produce se produce un escalado uniforme en forma de ampliación. El volumen del cubo unidad aumenta en un factor ka3. Se mantienen los ángulos (y por tanto, las formas).
  • kc=kb=ka<1: se produce se produce un escalado uniforme en forma de reducción. El volumen del cubo unidad disminuye en un factor ka3. Se mantienen los ángulos (y por tanto, las formas).
  • kc=1/(kakb): se produce una contracción. El volumen del cubo unidad no varía (observa que el determinante de la matriz M vuelve a ser 1).
En la siguiente construcción puedes comprobar el efecto de todos estos casos. Solo consideramos escalados positivos, pues los negativos (que cambian la orientación) se pueden conseguir por composición. Por otra parte, la composición de una isometría con un escalado uniforme positivo, también llamado isotrópico, da lugar a una transformación de semejanza, es decir, una transformación que conserva la forma.
Autor de la actividad y construcción GeoGebra: Rafael Losada.