SRIVASTAVA CLASSES(www.ompathshala.in)
 Physics

Instructor: O.P.Srivastav Office: 9452040162,8726629995
Class: Intermediate \& Engineering Entrance Semester:
Question \& Answer prepared by O.P.Srivastava Date:

Numerical based on Coloumb's Law (Level-I)

1. If three charges $Q_{1}=8.8 \times 10^{-5}$ micro Coulomb, $Q_{2}=7.2 \times 10^{-5}$ micro Coulomb and $Q_{3}=0.000184$ micro Coulomb are placed at three points. As $\mathrm{A} \equiv(6,3), \mathrm{B} \equiv(10,8)$ and $\mathrm{C} \equiv(17,8)$ then Find Net electrostatic force on charge at C .
2. If three charges $Q_{1}=9.8 \times 10^{-5}$ micro Coulomb, $Q_{2}=2.8 \times 10^{-5}$ micro Coulomb and $Q_{3}=0.000119$ micro Coulomb are placed at three points. As $\mathrm{A} \equiv(8,2), \mathrm{B} \equiv(1,14)$ and $\mathrm{C} \equiv(5,2)$ then Find Net electrostatic force on charge at C .
3. If three charges $Q_{1}=3.3 \times 10^{-5}$ micro Coulomb, $Q_{2}=1.5 \times 10^{-5}$ micro Coulomb and $Q_{3}=5.7 \times 10^{-5}$ micro Coulomb are placed at three points. As $\mathrm{A} \equiv(8,6), \mathrm{B} \equiv(4,9)$ and $\mathrm{C} \equiv(18,2)$ then Find Net electrostatic force on charge at C .
4. If three charges $Q_{1}=8 \times 10^{-5}$ micro Coulomb, $Q_{2}=2 \times 10^{-5}$ micro Coulomb and $Q_{3}=8 \times 10^{-5}$ micro Coulomb are placed at three points. As $\mathrm{A} \equiv(6,2), \mathrm{B} \equiv(5,14)$ and $\mathrm{C} \equiv(11,1)$ then Find Net electrostatic force on charge at C .
5. If three charges $Q_{1}=7.2 \times 10^{-5}$ micro Coulomb, $Q_{2}=7.2 \times 10^{-5}$ micro Coulomb and $Q_{3}=0.000192$ micro Coulomb are placed at three points. As $\mathrm{A} \equiv(1,7), \mathrm{B} \equiv(2,9)$ and $\mathrm{C} \equiv(5,2)$ then Find Net electrostatic force on charge at C .
6. If three charges $Q_{1}=2.5 \times 10^{-5}$ micro Coulomb, $Q_{2}=4.5 \times 10^{-5}$ micro Coulomb and $Q_{3}=0.000115$ micro Coulomb are placed at three points. As $\mathrm{A} \equiv(3,6), \mathrm{B} \equiv(5,14)$ and $\mathrm{C} \equiv(6,7)$ then Find Net electrostatic force on charge at C .
7. If three charges $Q_{1}=7.5 \times 10^{-5}$ micro Coulomb, $Q_{2}=2.5 \times 10^{-5}$ micro Coulomb and $Q_{3}=0.00011$ micro Coulomb are placed at three points. As $\mathrm{A} \equiv(6,1), \mathrm{B} \equiv(9,1)$ and $\mathrm{C} \equiv(11,11)$ then Find Net electrostatic force on charge at C .
8. If three charges $Q_{1}=9.9 \times 10^{-5}$ micro Coulomb, $Q_{2}=3.6 \times 10^{-5}$ micro Coulomb and $Q_{3}=6.3 \times 10^{-5}$ micro Coulomb are placed at three points. As $\mathrm{A} \equiv(7,8), \mathrm{B} \equiv(8,2)$ and $\mathrm{C} \equiv(8,15)$ then Find Net electrostatic force on charge at C .
9. If three charges $Q_{1}=0.000114$ micro Coulomb, $Q_{2}=3 \times 10^{-5}$ micro Coulomb and $Q_{3}=1.8 \times 10^{-5}$ micro Coulomb are placed at three points. As $\mathrm{A} \equiv(9,1), \mathrm{B} \equiv(12,3)$ and $\mathrm{C} \equiv(7,6)$ then Find Net electrostatic force on charge at C .
10. If three charges $Q_{1}=1.2 \times 10^{-5}$ micro Coulomb, $Q_{2}=5.4 \times 10^{-5}$ micro Coulomb and $Q_{3}=4.8 \times 10^{-5}$ micro Coulomb are placed at three points. As $\mathrm{A} \equiv(3,4), \mathrm{B} \equiv(3,3)$ and $\mathrm{C} \equiv(5,9)$ then Find Net electrostatic force on charge at C .
11. If three charges $Q_{1}=2.4 \times 10^{-5}$ micro Coulomb, $Q_{2}=2 \times 10^{-5}$ micro Coulomb and $Q_{3}=3.6 \times 10^{-5}$ micro Coulomb are placed at three points. As $\mathrm{A} \equiv(8,6), \mathrm{B} \equiv(2,8)$ and $\mathrm{C} \equiv(3,5)$ then Find Net electrostatic
force on charge at C .
12. If three charges $Q_{1}=8.4 \times 10^{-5}$ micro Coulomb, $Q_{2}=4.9 \times 10^{-5}$ micro Coulomb and $Q_{3}=0.000175$ micro Coulomb are placed at three points. As $A \equiv(1,4), B \equiv(7,7)$ and $C \equiv(1,11)$ then Find Net electrostatic force on charge at C .
13. If three charges $Q_{1}=5.6 \times 10^{-5}$ micro Coulomb, $Q_{2}=4.2 \times 10^{-5}$ micro Coulomb and $Q_{3}=0.000175$ micro Coulomb are placed at three points. As $A \equiv(9,4), B \equiv(12,1)$ and $C \equiv(17,10)$ then Find Net electrostatic force on charge at C .
14. If three charges $Q_{1}=1.5 \times 10^{-5}$ micro Coulomb, $Q_{2}=2.7 \times 10^{-5}$ micro Coulomb and $Q_{3}=1.2 \times 10^{-5}$ micro Coulomb are placed at three points. As $A \equiv(7,9), B \equiv(8,9)$ and $C \equiv(5,14)$ then Find Net electrostatic force on charge at C .
15. If three charges $Q_{1}=0.000126$ micro Coulomb, $Q_{2}=2.8 \times 10^{-5}$ micro Coulomb and $Q_{3}=4.2 \times 10^{-5}$ micro Coulomb are placed at three points. As $\mathrm{A} \equiv(3,5), \mathrm{B} \equiv(10,10)$ and $\mathrm{C} \equiv(19,3)$ then Find Net electrostatic force on charge at C.
16. If three charges $Q_{1}=0.00012$ micro Coulomb, $Q_{2}=3.2 \times 10^{-5}$ micro Coulomb and $Q_{3}=0.00016$ micro Coulomb are placed at three points. As $A \equiv(4,5), B \equiv(13,6)$ and $C \equiv(7,19)$ then Find Net electrostatic force on charge at C.
17. If three charges $Q_{1}=1.2 \times 10^{-5}$ micro Coulomb, $Q_{2}=1.6 \times 10^{-5}$ micro Coulomb and $Q_{3}=3.8 \times 10^{-5}$ micro Coulomb are placed at three points. As $A \equiv(1,6), B \equiv(9,14)$ and $C \equiv(11,10)$ then Find Net electrostatic force on charge at C.
18. If three charges $Q_{1}=4 \times 10^{-5}$ micro Coulomb, $Q_{2}=3.2 \times 10^{-5}$ micro Coulomb and $Q_{3}=0.000184$ micro Coulomb are placed at three points. As $A \equiv(6,2), B \equiv(4,7)$ and $C \equiv(5,7)$ then Find Net electrostatic force on charge at C .
19. If three charges $Q_{1}=0.000153$ micro Coulomb, $Q_{2}=5.4 \times 10^{-5}$ micro Coulomb and $Q_{3}=0.000207$ micro Coulomb are placed at three points. As $A \equiv(7,2), B \equiv(2,11)$ and $C \equiv(6,16)$ then Find Net electrostatic force on charge at C.
20. If three charges $Q_{1}=2.8 \times 10^{-5}$ micro Coulomb, $Q_{2}=5.6 \times 10^{-5}$ micro Coulomb and $Q_{3}=0.000126$ micro Coulomb are placed at three points. As $A \equiv(5,1), B \equiv(4,10)$ and $C \equiv(10,12)$ then Find Net electrostatic force on charge at C .
21. If the Charge of a particle is 3×10^{-6} micro coulomb and is at a distance of 1.2 meter from a positve charge of 3.6×10^{-6} micro coulomb . Then find the Electrostatic Force between them and locate the neutral point between the charges.
22. If the Charge of a particle is 1.2×10^{-6} micro coulomb and is at a distance of 1.4 meter from a positve charge of 1.68×10^{-6} micro coulomb . Then find the Electrostatic Force between them and locate the neutral point between the charges.
23. If the Charge of a particle is 1.8×10^{-6} micro coulomb and is at a distance of 0.2 meter from a positve charge of 3.6×10^{-7} micro coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges.
24. If the Charge of a particle is 2.4×10^{-6} micro coulomb and is at a distance of 0.4 meter from a positve charge of 9.600001×10^{-7} micro coulomb . Then find the Electrostatic Force between them and locate the neutral point between the charges.
25. If the Charge of a particle is 1.8×10^{-6} micro coulomb and is at a distance of 0.8 meter from a positve charge of 1.44×10^{-6} micro coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges.
26. If the Charge of a particle is 3×10^{-6} micro coulomb and is at a distance of 0.8 meter from a positve charge of 2.4×10^{-6} micro coulomb. Then find the Electrostatic Force between them and locate the neutral point between
the charges.
27. If the Charge of a particle is 2.4×10^{-6} micro coulomb and is at a distance of 1.2 meter from a positve charge of 2.88×10^{-6} micro coulomb . Then find the Electrostatic Force between them and locate the neutral point between the charges.
28. If the Charge of a particle is 2.4×10^{-6} micro coulomb and is at a distance of 1.4 meter from a positve charge of 3.36×10^{-6} micro coulomb . Then find the Electrostatic Force between them and locate the neutral point between the charges.
29. If the Charge of a particle is 6×10^{-7} micro coulomb and is at a distance of 0.2 meter from a positve charge of 1.2×10^{-7} micro coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges.
30. If the Charge of a particle is 3×10^{-6} micro coulomb and is at a distance of 0.4 meter from a positve charge of 1.2×10^{-6} micro coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges.
31. If the Charge of a particle is 3×10^{-6} micro coulomb and is at a distance of 0.8 meter from a positve charge of 2.4×10^{-6} micro coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges.
32. If the Charge of a particle is 1.8×10^{-6} micro coulomb and is at a distance of 0.8 meter from a positve charge of 1.44×10^{-6} micro coulomb . Then find the Electrostatic Force between them and locate the neutral point between the charges.
33. If the Charge of a particle is 2.4×10^{-6} micro coulomb and is at a distance of 1.4 meter from a positve charge of 3.36×10^{-6} micro coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges.
34. If the Charge of a particle is 6×10^{-7} micro coulomb and is at a distance of 1.2 meter from a positve charge of 7.200001×10^{-7} micro coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges.
35. If the Charge of a particle is 1.2×10^{-6} micro coulomb and is at a distance of 0.4 meter from a positve charge of 4.8×10^{-7} micro coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges.
36. If the Charge of a particle is 3×10^{-6} micro coulomb and is at a distance of 1.2 meter from a positve charge of 3.6×10^{-6} micro coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges.
37. If the Charge of a particle is 2.4×10^{-6} micro coulomb and is at a distance of 1.4 meter from a positve charge of 3.36×10^{-6} micro coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges.
38. If the Charge of a particle is 3×10^{-6} micro coulomb and is at a distance of 0.2 meter from a positve charge of 6×10^{-7} micro coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges.
39. If the Charge of a particle is 1.8×10^{-6} micro coulomb and is at a distance of 1.2 meter from a positve charge of 2.16×10^{-6} micro coulomb . Then find the Electrostatic Force between them and locate the neutral point between the charges.
40. If three charges $Q_{1}=6.999 \times 10^{-5}$ micro Coulomb, $Q_{2}=-2 \times 10^{-5}$ micro Coulomb and $Q_{3}=2.5 \times 10^{-5}$ micro Coulomb are placed at three points. As A $(4,2)$, B $(8,4)$ and C $(10,10)$ then Find Net electrostatic force on charge at C .
41. If three charges $Q_{1}=1.8 \times 10^{-5}$ micro Coulomb, $Q_{2}=-5 \times 10^{-6}$ micro Coulomb and $Q_{3}=1.7 \times 10^{-5}$ micro Coulomb are placed at three points. As A $(7,4), B(14,13)$ and $C(13,12)$ then Find Net electrostatic
force on charge at C .
42. If three charges $Q_{1}=3.6 \times 10^{-5}$ micro Coulomb, $Q_{2}=-1.2 \times 10^{-5}$ micro Coulomb and $Q_{3}=3.9 \times 10^{-5}$ micro Coulomb are placed at three points. As A $(7,9)$, B $(12,12)$ and C $(17,14)$ then Find Net electrostatic force on charge at C .
43. If three charges $Q_{1}=-1.6 \times 10^{-5}$ micro Coulomb, $Q_{2}=5 \times 10^{-6}$ micro Coulomb and $Q_{3}=-3 \times 10^{-6}$ micro Coulomb are placed at three points. As A (1,7) , B (3,3) and C (17,4) then Find Net electrostatic force on charge at C.
44. If three charges $Q_{1}=5 \times 10^{-5}$ micro Coulomb, $Q_{2}=-2 \times 10^{-5}$ micro Coulomb and $Q_{3}=6.999999 \times 10^{-5}$ micro Coulomb are placed at three points. As A $(5,6)$, B $(4,3)$ and $C(11,11)$ then Find Net electrostatic force on charge at C.
45. If three charges $Q_{1}=5.4 \times 10^{-5}$ micro Coulomb, $Q_{2}=-3.6 \times 10^{-5}$ micro Coulomb and $Q_{3}=6 \times 10^{-5}$ micro Coulomb are placed at three points. As A $(8,6)$, B $(8,13)$ and C $(14,12)$ then Find Net electrostatic force on charge at C .
46. If three charges $Q_{1}=5.2 \times 10^{-5}$ micro Coulomb, $Q_{2}=-2.8 \times 10^{-5}$ micro Coulomb and $Q_{3}=4 \times 10^{-5}$ micro Coulomb are placed at three points. As A $(7,4), B(9,3)$ and $C(5,12)$ then Find Net electrostatic force on charge at C.
47. If three charges $Q_{1}=1.8 \times 10^{-5}$ micro Coulomb, $Q_{2}=-5.4 \times 10^{-5}$ micro Coulomb and $Q_{3}=4.8 \times 10^{-5}$ micro Coulomb are placed at three points. As A $(2,7), B(6,1)$ and $C(14,9)$ then Find Net electrostatic force on charge at C.
48. If three charges $Q_{1}=7 \times 10^{-6}$ micro Coulomb, $Q_{2}=-5 \times 10^{-6}$ micro Coulomb and $Q_{3}=2.1 \times 10^{-5}$ micro Coulomb are placed at three points. As A $(3,3)$, B $(6,5)$ and C $(1,11)$ then Find Net electrostatic force on charge at C.
49. If three charges $Q_{1}=3.6 \times 10^{-5}$ micro Coulomb, $Q_{2}=-2 \times 10^{-5}$ micro Coulomb and $Q_{3}=0.0001$ micro Coulomb are placed at three points. As A $(5,9)$, B (12,13) and C $(18,16)$ then Find Net electrostatic force on charge at C.
50. If three charges $Q_{1}=7.2 \times 10^{-5}$ micro Coulomb, $Q_{2}=-8.100001 \times 10^{-5}$ micro Coulomb and $Q_{3}=$ 0.000234 micro Coulomb are placed at three points. As $A(3,8), B(10,6)$ and $C(9,15)$ then Find Net electrostatic force on charge at C .
51. If three charges $Q_{1}=1.4 \times 10^{-5}$ micro Coulomb, $Q_{2}=-1.4 \times 10^{-5}$ micro Coulomb and $Q_{3}=5 \times 10^{-5}$ micro Coulomb are placed at three points. As A $(6,4), B(8,2)$ and $C(9,17)$ then Find Net electrostatic force on charge at C .
52. If three charges $Q_{1}=3.4 \times 10^{-5}$ micro Coulomb, $Q_{2}=-1.6 \times 10^{-5}$ micro Coulomb and $Q_{3}=1.4 \times 10^{-5}$ micro Coulomb are placed at three points. As A $(3,5), B(9,11)$ and $C(6,13)$ then Find Net electrostatic force on charge at C .
53. If three charges $Q_{1}=1.1 \times 10^{-5}$ micro Coulomb, $Q_{2}=-6 \times 10^{-6}$ micro Coulomb and $Q_{3}=1.3 \times 10^{-5}$ micro Coulomb are placed at three points. As A $(8,3)$, B $(6,9)$ and $C(3,12)$ then Find Net electrostatic force on charge at C .
54. If three charges $Q_{1}=6 \times 10^{-6}$ micro Coulomb, $Q_{2}=-1.6 \times 10^{-5}$ micro Coulomb and $Q_{3}=1.8 \times 10^{-5}$ micro Coulomb are placed at three points. As A $(1,3)$, B (13,13) and C $(6,8)$ then Find Net electrostatic force on charge at C .
55. If three charges $Q_{1}=6.6 \times 10^{-5}$ micro Coulomb, $Q_{2}=-2.4 \times 10^{-5}$ micro Coulomb and $Q_{3}=3.6 \times 10^{-5}$ micro Coulomb are placed at three points. As A $(8,5), \mathrm{B}(9,9)$ and $\mathrm{C}(16,14)$ then Find Net electrostatic force on charge at C .
56. If three charges $Q_{1}=5.4 \times 10^{-5}$ micro Coulomb, $Q_{2}=-5.4 \times 10^{-5}$ micro Coulomb and $Q_{3}=1.8 \times 10^{-5}$ micro Coulomb are placed at three points. As A $(3,5), B(14,8)$ and C $(4,3)$ then Find Net electrostatic force on
charge at C .
57. If three charges $Q_{1}=2.4 \times 10^{-5}$ micro Coulomb, $Q_{2}=-1.5 \times 10^{-5}$ micro Coulomb and $Q_{3}=7.2 \times 10^{-5}$ micro Coulomb are placed at three points. As A $(8,8)$, B $(2,5)$ and C $(11,8)$ then Find Net electrostatic force on charge at C .
58. If three charges $Q_{1}=1.4 \times 10^{-5}$ micro Coulomb, $Q_{2}=-8 \times 10^{-6}$ micro Coulomb and $Q_{3}=3.6 \times 10^{-5}$ micro Coulomb are placed at three points. As A $(2,7)$, B $(7,7)$ and C $(5,6)$ then Find Net electrostatic force on charge at C .
59. If three charges $Q_{1}=0.000104$ micro Coulomb, $Q_{2}=-5.6 \times 10^{-5}$ micro Coulomb and $Q_{3}=0.000176$ micro Coulomb are placed at three points. As A $(3,5)$, B $(2,3)$ and C $(15,2)$ then Find Net electrostatic force on charge at C .
60. If three charges $\mathrm{Q} 1=7 \times 10^{-5}$ micro Coulomb, $\mathrm{Q} 2=-2.8 \times 10^{-5}$ micro Coulomb and $\mathrm{Q} 3=2.8 \times 10^{-5}$ micro Coulomb are placed at three points. As A $(2,3), B(9,12)$ and $C(3,14)$ then Find Net electrostatic force on charge at C .
61. If three charges $\mathrm{Q} 1=9 \times 10^{-5}$ micro Coulomb, $\mathrm{Q} 2=-4.5 \times 10^{-5}$ micro Coulomb and $\mathrm{Q} 3=2.5 \times 10^{-5}$ micro Coulomb are placed at three points. As A $(8,2), B(10,13)$ and $C(13,9)$ then Find Net electrostatic force on charge at C .
62. If three charges $\mathrm{Q} 1=0.000108$ micro Coulomb, $\mathrm{Q} 2=-8.100001 \times 10^{-5}$ micro Coulomb and $\mathrm{Q} 3=0.000216$ micro Coulomb are placed at three points. As A $(2,5)$, B $(4,6)$ and $C(16,18)$ then Find Net electrostatic force on charge at C.
63. If three charges $\mathrm{Q} 1=2.4 \times 10^{-5}$ micro Coulomb, $\mathrm{Q} 2=-6.4 \times 10^{-5}$ micro Coulomb and $\mathrm{Q} 3=0.000192$ micro Coulomb are placed at three points. As $A(9,8), B(8,10)$ and $C(8,11)$ then Find Net electrostatic force on charge at C .
64. If three charges $\mathrm{Q} 1=9.9 \times 10^{-5}$ micro Coulomb, $\mathrm{Q} 2=-4.5 \times 10^{-5}$ micro Coulomb and $\mathrm{Q} 3=6.3 \times 10^{-5}$ micro Coulomb are placed at three points. As A $(4,5), B(1,3)$ and $C(11,5)$ then Find Net electrostatic force on charge at C.
65. If three charges $\mathrm{Q} 1=2.8 \times 10^{-5}$ micro Coulomb, $\mathrm{Q} 2=-6.3 \times 10^{-5}$ micro Coulomb and $\mathrm{Q} 3=0.000175$ micro Coulomb are placed at three points. As $\mathrm{A}(7,1), \mathrm{B}(9,10)$ and $\mathrm{C}(6,18)$ then Find Net electrostatic force on charge at C.
66. If three charges $\mathrm{Q} 1=0.000144$ micro Coulomb, $\mathrm{Q} 2=-6.3 \times 10^{-5}$ micro Coulomb and $\mathrm{Q} 3=0.000234$ micro Coulomb are placed at three points. As A $(6,3)$, B $(3,10)$ and $C(4,5)$ then Find Net electrostatic force on charge at C .
67. If three charges $\mathrm{Q} 1=1.4 \times 10^{-5}$ micro Coulomb, $\mathrm{Q} 2=-1.8 \times 10^{-5}$ micro Coulomb and $\mathrm{Q} 3=2.8 \times 10^{-5}$ micro Coulomb are placed at three points. As A $(9,8)$, B $(4,9)$ and $C(14,3)$ then Find Net electrostatic force on charge at C .
68. If three charges $\mathrm{Q} 1=-1.5 \times 10^{-5}$ micro Coulomb, $\mathrm{Q} 2=6 \mathrm{E}-06$ micro Coulomb and $\mathrm{Q} 3=-1.2 \times 10^{-5}$ micro Coulomb are placed at three points. As A $(7,1), B(4,2)$ and $C(18,7)$ then Find Net electrostatic force on charge at C.
69. If three charges $\mathrm{Q} 1=4.9 \times 10^{-5}$ micro Coulomb, $\mathrm{Q} 2=-3.5 \times 10^{-5}$ micro Coulomb and $\mathrm{Q} 3=4.2 \times 10^{-5}$ micro Coulomb are placed at three points. As A $(7,3), B(13,5)$ and $C(9,4)$ then Find Net electrostatic force on charge at C .
70. If three charges $\mathrm{Q} 1=0.000144$ micro Coulomb, $\mathrm{Q} 2=-4.5 \times 10^{-5}$ micro Coulomb and $\mathrm{Q} 3=0.000207$ micro Coulomb are placed at three points. As A $(9,5), \mathrm{B}(5,12)$ and $\mathrm{C}(9,10)$ then Find Net electrostatic force on charge at C.
71. If three charges $\mathrm{Q} 1=6.8 \times 10^{-5}$ micro Coulomb, $\mathrm{Q} 2=-2.4 \times 10^{-5}$ micro Coulomb and $\mathrm{Q} 3=6 \times 10^{-5}$ micro Coulomb are placed at three points. As A $(2,7), \mathrm{B}(7,3)$ and $\mathrm{C}(5,9)$ then Find Net electrostatic force on charge
at C .
72. If Four charges $Q_{1}=4 \times 10^{-5}$ Coulomb, $Q_{2}=-2 \times 10^{-5}$ Coulomb, $Q_{3}=4 \times 10^{-5}$ and Coulomb $Q_{4}=-1.2 \times 10^{-5}$ Coulomb are placed at three points. As A (1,5), B (5,7), C (16,1) and D $(5,0)$ then Find Net electrostatic force on charge at D.
73. If Four charges $Q_{1}=7 \times 10^{-5}$ Coulomb, $Q_{2}=-6.3 \times 10^{-5}$ Coulomb, $Q_{3}=0.000196$ and Coulomb $Q_{4}=-$ 0.000154 Coulomb are placed at three points. As A $(2,2), B(5,10), C(-3,14)$ and $D(2,5)$ then Find Net electrostatic force on charge at D.
74. If Four charges $Q_{1}=8 \times 10^{-6}$ Coulomb, $Q_{2}=-1.2 \times 10^{-5}$ Coulomb, $Q_{3}=4.6 \times 10^{-5}$ and Coulomb $Q_{4}=-$ 2.8×10^{-5} Coulomb are placed at three points. As $\mathrm{A}(9,5), \mathrm{B}(9,10), \mathrm{C}(6,2)$ and $\mathrm{D}(-4,5)$ then Find Net electrostatic force on charge at D.
75. If Four charges $Q_{1}=2.4 \times 10^{-5}$ Coulomb, $Q_{2}=-4.8 \times 10^{-5}$ Coulomb, $Q_{3}=0.000132$ and Coulomb $Q_{4}=$ -8.4×10^{-5} Coulomb are placed at three points. As A $(7,6), B(13,2), C(13,-1)$ and $D(-1,9)$ then Find Net electrostatic force on charge at D.
76. If Four charges $Q_{1}=0.000144$ Coulomb, $Q_{2}=-4.8 \times 10^{-5}$ Coulomb, $Q_{3}=0.000312$ and Coulomb $Q_{4}=$ -0.000144 Coulomb are placed at three points. As A $(2,0), B(5,4), C(3,-1)$ and $D(-4,3)$ then Find Net electrostatic force on charge at D .
77. If Four charges $Q_{1}=2.4 \times 10^{-5}$ Coulomb, $Q_{2}=-1.4 \times 10^{-5}$ Coulomb, $Q_{3}=3.6 \times 10^{-5}$ and Coulomb $Q_{4}=$ -4.2×10^{-5} Coulomb are placed at three points. As A $(0,6), B(5,7), C(8,18)$ and $D(-2,15)$ then Find Net electrostatic force on charge at D.
78. If Four charges $Q_{1}=1.2 \times 10^{-5}$ Coulomb, $Q_{2}=-5.4 \times 10^{-5}$ Coulomb, $Q_{3}=0.000204$ and Coulomb $Q_{4}=$ -0.000108 Coulomb are placed at three points. As A $(1,2), B(6,12), C(18,-3)$ and $D(-3,18)$ then Find Net electrostatic force on charge at D.
79. If Four charges $Q_{1}=6 \times 10^{-5}$ Coulomb, $Q_{2}=-4.8 \times 10^{-5}$ Coulomb, $Q_{3}=3 \times 10^{-5}$ and Coulomb $Q_{4}=-$ 1.8×10^{-5} Coulomb are placed at three points. As A $(0,3), B(5,14), C(8,16)$ and $D(-2,3)$ then Find Net electrostatic force on charge at D.
80. If Four charges $Q_{1}=4.2 \times 10^{-5}$ Coulomb, $Q_{2}=-4.9 \times 10^{-5}$ Coulomb, $Q_{3}=0.000203$ and Coulomb $Q_{4}=$ -0.000189 Coulomb are placed at three points. As A $(0,5), B(-2,9), C(4,0)$ and $D(-1,5)$ then Find Net electrostatic force on charge at D.
81. If Four charges $Q_{1}=6 \times 10^{-6}$ Coulomb, $Q_{2}=-7 \times 10^{-6}$ Coulomb, $Q_{3}=1.9 \times 10^{-5}$ and Coulomb $Q_{4}=-1 \times 10^{-5}$ Coulomb are placed at three points. As A $(8,6), B(4,6), C(13,-2)$ and $D(3,26)$ then Find Net electrostatic force on charge at D.
82. If Four charges $Q_{1}=4.4 \times 10^{-5}$ Coulomb, $Q_{2}=-2.8 \times 10^{-5}$ Coulomb, $Q_{3}=0.00014$ and Coulomb $Q_{4}=-$ 1.6×10^{-5} Coulomb are placed at three points. As A $(5,8), \mathrm{B}(-2,-2), \mathrm{C}(8,5)$ and $\mathrm{D}(8,10)$ then Find Net electrostatic force on charge at D .
83. If Four charges $Q_{1}=1.6 \times 10^{-5}$ Coulomb, $Q_{2}=-9 \times 10^{-6}$ Coulomb, $Q_{3}=8 \times 10^{-6}$ and Coulomb $Q_{4}=-$ 1.2×10^{-5} Coulomb are placed at three points. As A $(9,2), B(5,9), C(15,-2)$ and $D(6,0)$ then Find Net electrostatic force on charge at D .
84. If Four charges $Q_{1}=2.7 \times 10^{-5}$ Coulomb, $Q_{2}=-2.1 \times 10^{-5}$ Coulomb, $Q_{3}=3 \times 10^{-6}$ and Coulomb $Q_{4}=-$ 6.6×10^{-5} Coulomb are placed at three points. As A $(6,2), B(13,4), C(7,-2)$ and $D(3,-1)$ then Find Net electrostatic force on charge at D .
85. If Four charges $Q_{1}=4 \times 10^{-6}$ Coulomb, $Q_{2}=-8 \times 10^{-6}$ Coulomb, $Q_{3}=3.2 \times 10^{-5}$ and Coulomb $Q_{4}=-$ 1.1×10^{-5} Coulomb are placed at three points. As A $(1,3), B(12,4), C(-3,7)$ and $D(2,1)$ then Find Net electrostatic force on charge at D.
86. If Four charges $Q_{1}=2.1 \times 10^{-5}$ Coulomb, $Q_{2}=-4.2 \times 10^{-5}$ Coulomb, $Q_{3}=0.000203$ and Coulomb $Q_{4}=$ -0.000154 Coulomb are placed at three points. As A $(2,0), B(5,1), C(7,15)$ and $D(4,15)$ then Find Net
electrostatic force on charge at D.
87. If Four charges $Q_{1}=4 \times 10^{-5}$ Coulomb, $Q_{2}=-2 \times 10^{-5}$ Coulomb, $Q_{3}=4 \times 10^{-5}$ and Coulomb $Q_{4}=-1.2 \times 10^{-5}$ Coulomb are placed at three points. As A (1,5), B (5,7), C (16,1) and D $(5,0)$ then Find Net electrostatic force on charge at D.
88. If Four charges $Q_{1}=7 \times 10^{-5}$ Coulomb, $Q_{2}=-6.3 \times 10^{-5}$ Coulomb, $Q_{3}=0.000196$ and Coulomb $Q_{4}=-$ 0.000154 Coulomb are placed at three points. As A $(2,2), B(5,10), C(-3,14)$ and $D(2,5)$ then Find Net electrostatic force on charge at D.
89. If Four charges $Q_{1}=8 \times 10^{-6}$ Coulomb, $Q_{2}=-1.2 \times 10^{-5}$ Coulomb, $Q_{3}=4.6 \times 10^{-5}$ and Coulomb $Q_{4}=-$ 2.8×10^{-5} Coulomb are placed at three points. As $\mathrm{A}(9,5), \mathrm{B}(9,10), \mathrm{C}(6,2)$ and $\mathrm{D}(-4,5)$ then Find Net electrostatic force on charge at D .
90. If Four charges $Q_{1}=2.4 \times 10^{-5}$ Coulomb, $Q_{2}=-4.8 \times 10^{-5}$ Coulomb, $Q_{3}=0.000132$ and Coulomb $Q_{4}=$ -8.4×10^{-5} Coulomb are placed at three points. As A $(7,6), B(13,2), C(13,-1)$ and $D(-1,9)$ then Find Net electrostatic force on charge at D.
91. If Four charges $Q_{1}=0.000144$ Coulomb, $Q_{2}=-4.8 \times 10^{-5}$ Coulomb, $Q_{3}=0.000312$ and Coulomb $Q_{4}=$ -0.000144 Coulomb are placed at three points. As A $(2,0), B(5,4), C(3,-1)$ and $D(-4,3)$ then Find Net electrostatic force on charge at D .
92. If Four charges $Q_{1}=2.4 \times 10^{-5}$ Coulomb, $Q_{2}=-1.4 \times 10^{-5}$ Coulomb, $Q_{3}=3.6 \times 10^{-5}$ and Coulomb $Q_{4}=$ -4.2×10^{-5} Coulomb are placed at three points. As A $(0,6), B(5,7), C(8,18)$ and $D(-2,15)$ then Find Net electrostatic force on charge at D.
93. If Four charges $Q_{1}=1.2 \times 10^{-5}$ Coulomb, $Q_{2}=-5.4 \times 10^{-5}$ Coulomb, $Q_{3}=0.000204$ and Coulomb $Q_{4}=$ -0.000108 Coulomb are placed at three points. As $\mathrm{A}(1,2), \mathrm{B}(6,12), \mathrm{C}(18,-3)$ and $\mathrm{D}(-3,18)$ then Find Net electrostatic force on charge at D.
94. If Four charges $Q_{1}=6 \times 10^{-5}$ Coulomb, $Q_{2}=-4.8 \times 10^{-5}$ Coulomb, $Q_{3}=3 \times 10^{-5}$ and Coulomb $Q_{4}=-$ 1.8×10^{-5} Coulomb are placed at three points. As A $(0,3), B(5,14), C(8,16)$ and $D(-2,3)$ then Find Net electrostatic force on charge at D.
95. If Four charges $Q_{1}=4.2 \times 10^{-5}$ Coulomb, $Q_{2}=-4.9 \times 10^{-5}$ Coulomb, $Q_{3}=0.000203$ and Coulomb $Q_{4}=$ -0.000189 Coulomb are placed at three points. As A $(0,5), B(-2,9), C(4,0)$ and $D(-1,5)$ then Find Net electrostatic force on charge at D.
96. If Four charges $Q_{1}=6 \times 10^{-6}$ Coulomb, $Q_{2}=-7 \times 10^{-6}$ Coulomb, $Q_{3}=1.9 \times 10^{-5}$ and Coulomb $Q_{4}=-1 \times 10^{-5}$ Coulomb are placed at three points. As A $(8,6), B(4,6), C(13,-2)$ and $D(3,26)$ then Find Net electrostatic force on charge at D.
97. If Four charges $Q_{1}=4.4 \times 10^{-5}$ Coulomb, $Q_{2}=-2.8 \times 10^{-5}$ Coulomb, $Q_{3}=0.00014$ and Coulomb $Q_{4}=-$ 1.6×10^{-5} Coulomb are placed at three points. As A $(5,8), \mathrm{B}(-2,-2), \mathrm{C}(8,5)$ and $\mathrm{D}(8,10)$ then Find Net electrostatic force on charge at D .
98. If Four charges $Q_{1}=1.6 \times 10^{-5}$ Coulomb, $Q_{2}=-9 \times 10^{-6}$ Coulomb, $Q_{3}=8 \times 10^{-6}$ and Coulomb $Q_{4}=-$ 1.2×10^{-5} Coulomb are placed at three points. As A $(9,2), B(5,9), C(15,-2)$ and $D(6,0)$ then Find Net electrostatic force on charge at D .
99. If Four charges $Q_{1}=2.7 \times 10^{-5}$ Coulomb, $Q_{2}=-2.1 \times 10^{-5}$ Coulomb, $Q_{3}=3 \times 10^{-6}$ and Coulomb $Q_{4}=-$ 6.6×10^{-5} Coulomb are placed at three points. As A $(6,2), B(13,4), C(7,-2)$ and $D(3,-1)$ then Find Net electrostatic force on charge at D .
100. If Four charges $Q_{1}=4 \times 10^{-6}$ Coulomb, $Q_{2}=-8 \times 10^{-6}$ Coulomb, $Q_{3}=3.2 \times 10^{-5}$ and Coulomb $Q_{4}=-$ 1.1×10^{-5} Coulomb are placed at three points. As A $(1,3), B(12,4), C(-3,7)$ and $D(2,1)$ then Find Net electrostatic force on charge at D.
101. If Four charges $Q_{1}=2.1 \times 10^{-5}$ Coulomb, $Q_{2}=-4.2 \times 10^{-5}$ Coulomb, $Q_{3}=0.000203$ and Coulomb $Q_{4}=$ -0.000154 Coulomb are placed at three points. As $A(2,0), B(5,1), C(7,15)$ and $D(4,15)$ then Find Net
electrostatic force on charge at D.
102. If the Charge of a particle is 2.4×10^{-6} Coulomb and is at a distance of 0.8 meter from a positve charge of 1.92×10^{-6} Coulomb . Then find the Electrostatic Force between them and locate the neutral point between the charges.
103. If the Charge of a particle is 9.6×10^{-6} Coulomb and is at a distance of 0.6 meter from a positve charge of 5.76×10^{-6} Coulomb . Then find the Electrostatic Force between them and locate the neutral point between the charges.
104. If Four charges $Q_{1}=3 \times 10^{-5}$ Coulomb, $Q_{2}=-1.5 \times 10^{-5}$ Coulomb, $Q_{3}=3 \times 10^{-6}$ Coulomb $Q_{4}=$ -3.9×10^{-5} Coulomb are placed at three points. As A (9,9) , B (10,6) , C (9,0$)$ and $\mathrm{D}(4,28)$ then Find Net electrostatic force on charge at D.
105. If three charges $\mathrm{Q}_{1}=1 \times 10^{-5}$ Coulomb, $\mathrm{Q}_{2}=-2.5 \times 10^{-5}$ Coulomb and $\mathrm{Q}_{3}=3.5 \times 10^{-5}$ Coulomb are placed at three points. As A $(8,7), B(7,9)$ and $C(8,10)$ then Find Net electrostatic force on charge at C.
106. If the Charge of a particle is 7.5×10^{-6} Coulomb and is at a distance of 0.4 meter from a positve charge of 3×10^{-6} Coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges.
107. If three charges $\mathrm{Q}_{1}=3.8 \times 10^{-5}$ Coulomb, $\mathrm{Q}_{2}=-8 \times 10^{-6}$ Coulomb and $\mathrm{Q}_{3}=1.4 \times 10^{-5}$ Coulomb are placed at three points. As $\mathrm{A}(4,7), \mathrm{B}(5,11)$ and $\mathrm{C}(16,6)$ then Find Net electrostatic force on charge at C .
108. If Four charges $Q_{1}=6 \times 10^{-5}$ Coulomb, $Q_{2}=-3.6 \times 10^{-5}$ Coulomb, $Q_{3}=0.000222$ Coulomb $Q_{4}=$ -7.8×10^{-5} Coulomb are placed at three points. As A $(2,2), B(12,3), C(10,18)$ and $D(3,13)$ then Find Net electrostatic force on charge at D .
109. If three charges $\mathrm{Q}_{1}=4.2 \times 10^{-5}$ Coulomb, $\mathrm{Q}_{2}=-3 \times 10^{-5}$ Coulomb and $\mathrm{Q}_{3}=0.000138$ Coulomb are placed at three points. As $\mathrm{A}(9,1), \mathrm{B}(14,4)$ and $\mathrm{C}(5,11)$ then Find Net electrostatic force on charge at C.
110. If three charges $\mathrm{Q}_{1}=8 \times 10^{-5}$ Coulomb, $\mathrm{Q}_{2}=-2 \times 10^{-5}$ Coulomb and $\mathrm{Q}_{3}=0.000115$ Coulomb are placed at three points. As $A(8,9), B(4,14)$ and $C(10,7)$ then Find Net electrostatic force on charge at C .
111. If the Charge of a particle is 6×10^{-6} Coulomb and is at a distance of 0.2 meter from a positve charge of 1.2×10^{-6} Coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges.
112. If Four charges $\mathrm{Q}_{1}=5 \times 10^{-6}$ Coulomb, $\mathrm{Q}_{2}=-4 \times 10^{-6}$ Coulomb, $\mathrm{Q}_{3}=1.5 \times 10^{-5}$ Coulomb $\mathrm{Q}_{4}=-1.9 \times 10^{-5}$ Coulomb are placed at three points. As A (6,1) , B ($1,-2$) , C ($12,-3$) and D ($7,-2$) then Find Net electrostatic force on charge at D.
113. If Four charges $\mathrm{Q}_{1}=5.6 \times 10^{-5}$ Coulomb, $\mathrm{Q}_{2}=-4.8 \times 10^{-5}$ Coulomb, $\mathrm{Q}_{3}=5.6 \times 10^{-5}$ Coulomb $\mathrm{Q}_{4}=-0.000112$ Coulomb are placed at three points. As A (4,9) , B (13,10$), \mathrm{C}(0,19)$ and $\mathrm{D}(-3,25)$ then Find Net electrostatic force on charge at D.
114. If the Charge of a particle is 4.8×10^{-6} Coulomb and is at a distance of 0.8 meter from a positve charge of 3.84×10^{-6} Coulomb . Then find the Electrostatic Force between them and locate the neutral point between the charges.
115. If the Charge of a particle is 2.4×10^{-6} Coulomb and is at a distance of 0.4 meter from a positve charge of 9.600001×10^{-7} Coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges.
116. If Four charges $\mathrm{Q}_{1}=0.000126$ Coulomb, $\mathrm{Q}_{2}=-8.100001 \times 10^{-5}$ Coulomb, $\mathrm{Q}_{3}=0.000243$ Coulomb $\mathrm{Q}_{4}=$ -0.000171 Coulomb are placed at three points. As $\mathrm{A}(8,6), \mathrm{B}(2,8), \mathrm{C}(0,15)$ and $\mathrm{D}(-1,1)$ then Find Net electrostatic force on charge at D .
117. If Four charges $\mathrm{Q}_{1}=-1.3 \times 10^{-5}$ Coulomb, $\mathrm{Q}_{2}=7 \times 10^{-6}$ Coulomb, $\mathrm{Q}_{3}=-3.4 \times 10^{-5}$ Coulomb $\mathrm{Q}_{4}=2.7 \times 10^{-5}$ Coulomb are placed at three points. As A $(2,7), B(-1,9), C(-3,3)$ and $D(-4,22)$ then Find Net electrostatic
force on charge at D .
118. If the Charge of a particle is -1.2×10^{-6} Coulomb and is at a distance of 0.2 meter from a positve charge of -2.4×10^{-7} Coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges.
119. If Four charges $\mathrm{Q}_{1}=4.5 \times 10^{-5}$ Coulomb, $\mathrm{Q}_{2}=-2.7 \times 10^{-5}$ Coulomb, $\mathrm{Q}_{3}=1.5 \times 10^{-5}$ Coulomb $\mathrm{Q}_{4}=-$ 3.3×10^{-5} Coulomb are placed at three points. As $A(8,1), B(11,10), C(1,17)$ and $D(9,11)$ then Find Net electrostatic force on charge at D.
120. If the Charge of a particle is 3.6×10^{-6} Coulomb and is at a distance of 1.4 meter from a positve charge of 5.04×10^{-6} Coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges.
121. If the Charge of a particle is 4.5×10^{-6} Coulomb and is at a distance of 0.8 meter from a positve charge of 3.6×10^{-6} Coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges.
122. If the Charge of a particle is 9.000001×10^{-7} Coulomb and is at a distance of 0.6 meter from a positve charge of 5.400001×10^{-7} Coulomb . Then find the Electrostatic Force between them and locate the neutral point between the charges.
123. If Four charges $\mathrm{Q}_{1}=-2.8 \times 10^{-5}$ Coulomb, $\mathrm{Q}_{2}=1.4 \times 10^{-5}$ Coulomb, $\mathrm{Q}_{3}=-7 \times 10^{-5}$ Coulomb $\mathrm{Q}_{4}=5 \times 10^{-5}$ Coulomb are placed at three points. As A $(6,6), B(-1,11), C(-1,17)$ and $D(-4,22)$ then Find Net electrostatic force on charge at D.
124. If Four charges $\mathrm{Q}_{1}=6 \times 10^{-5}$ Coulomb, $\mathrm{Q}_{2}=-2.5 \times 10^{-5}$ Coulomb, $\mathrm{Q}_{3}=3 \times 10^{-5}$ Coulomb $\mathrm{Q}_{4}=-0.00011$ Coulomb are placed at three points. As A $(1,5), B(-1,5), C(4,14)$ and $D(-3,13)$ then Find Net electrostatic force on charge at D.
125. If three charges $\mathrm{Q}_{1}=4.2 \times 10^{-5}$ Coulomb, $\mathrm{Q}_{2}=-1.2 \times 10^{-5}$ Coulomb and $\mathrm{Q}_{3}=3.3 \times 10^{-5}$ Coulomb are placed at three points. As $A(6,4), B(4,9)$ and $C(13,18)$ then Find Net electrostatic force on charge at C .
126. If Four charges $Q_{1}=1.1 \times 10^{-5}$ Coulomb, $Q_{2}=-9 \times 10^{-6}$ Coulomb, $Q_{3}=3 \times 10^{-5}$ Coulomb $Q_{4}=-4 \times 10^{-6}$ Coulomb are placed at three points. As A $(6,6), B(4,2), C(0,3)$ and $D(9,1)$ then Find Net electrostatic force on charge at D.
127. If Four charges $\mathrm{Q}_{1}=1.8 \times 10^{-5}$ Coulomb, $\mathrm{Q}_{2}=-7 \times 10^{-6}$ Coulomb, $\mathrm{Q}_{3}=2.1 \times 10^{-5}$ Coulomb $\mathrm{Q}_{4}=-1.3 \times 10^{-5}$ Coulomb are placed at three points. As A $(4,4), B(2,12), C(0,3)$ and $D(3,6)$ then Find Net electrostatic force on charge at D.
128. If the Charge of a particle is 6×10^{-7} Coulomb and is at a distance of 0.8 meter from a positve charge of 4.8×10^{-7} Coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges.
129. If the Charge of a particle is 6×10^{-7} Coulomb and is at a distance of 1.2 meter from a positve charge of 7.200001×10^{-7} Coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges.
130. If the Charge of a particle is 3×10^{-7} Coulomb and is at a distance of 0.6 meter from a positve charge of 1.8×10^{-7} Coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges.
131. If three charges $\mathrm{Q} 1=2.7 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=-5.4 \times 10^{-5}$ Coulomb and $\mathrm{Q} 3=9 \times 10^{-5}$ Coulomb are placed at three points. As A $(5,4), B(11,3)$ and $C(4,15)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
132. If three charges $\mathrm{Q} 1=1 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=-2.5 \times 10^{-5}$ Coulomb and $\mathrm{Q} 3=0.000105$ Coulomb are placed at three points. As A $(6,4), B(14,8)$ and $C(6,14)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
133. If three charges $\mathrm{Q} 1=1.8 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=-5.4 \times 10^{-5}$ Coulomb and $\mathrm{Q} 3=0.000243$ Coulomb are placed at three points. As $A(9,8), B(6,10)$ and $C(19,6)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
134. If three charges $\mathrm{Q} 1=4 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=-4.5 \times 10^{-5}$ Coulomb and $\mathrm{Q} 3=6.5 \times 10^{-5}$ Coulomb are placed at three points. As A $(9,1)$, B $(13,12)$ and $C(15,3)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
135. If three charges $\mathrm{Q} 1=4.2 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=-5.4 \times 10^{-5}$ Coulomb and $\mathrm{Q} 3=5.4 \times 10^{-5}$ Coulomb are placed at three points. As $A(4,7), B(13,8)$ and $C(7,5)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
136. If three charges $\mathrm{Q} 1=-3.4 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=8 \times 10^{-6}$ Coulomb and $\mathrm{Q} 3=-2.2 \times 10^{-5}$ Coulomb are placed at three points. As $A(3,2), B(4,13)$ and $C(15,1)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
137. If three charges $\mathrm{Q} 1=-1.6 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=1 \times 10^{-5}$ Coulomb and $\mathrm{Q} 3=-3.4 \times 10^{-5}$ Coulomb are placed at three points. As A $(4,2), B(2,4)$ and $C(18,18)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
138. If three charges $\mathrm{Q} 1=-4 \times 10^{-6}$ Coulomb, $\mathrm{Q} 2=8 \times 10^{-6}$ Coulomb and $\mathrm{Q} 3=-1.1 \times 10^{-5}$ Coulomb are placed at three points. As $A(7,6), B(7,8)$ and $C(13,1)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
139. If three charges $\mathrm{Q} 1=4 \times 10^{-6}$ Coulomb, $\mathrm{Q} 2=-1 \times 10^{-5}$ Coulomb and $\mathrm{Q} 3=1.8 \times 10^{-5}$ Coulomb are placed at three points. As A $(5,4)$, B $(4,5)$ and $C(11,13)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
140. If three charges $\mathrm{Q} 1=2.8 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=-4.9 \times 10^{-5}$ Coulomb and $\mathrm{Q} 3=5.6 \times 10^{-5}$ Coulomb are placed at three points. As $A(8,2), B(1,5)$ and $C(9,6)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
141. If three charges $\mathrm{Q} 1=9.5 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=-2.5 \times 10^{-5}$ Coulomb and $\mathrm{Q} 3=6.999999 \times 10^{-5}$ Coulomb are placed at three points. As A $(1,2), B(1,4)$ and $C(16,17)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
142. If three charges $\mathrm{Q} 1=9.6 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=-3.2 \times 10^{-5}$ Coulomb and $\mathrm{Q} 3=0.000152$ Coulomb are placed at three points. As A (1,2), B (1,9) and C (19,2) then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
143. If three charges $\mathrm{Q} 1=5.5 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=-3.5 \times 10^{-5}$ Coulomb and $\mathrm{Q} 3=0.00013$ Coulomb are placed at three points. As $A(7,5), B(8,4)$ and $C(12,14)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
144. If three charges $\mathrm{Q} 1=-4 \times 10^{-6}$ Coulomb, $\mathrm{Q} 2=1.2 \times 10^{-5}$ Coulomb and $\mathrm{Q} 3=-1.8 \times 10^{-5}$ Coulomb are placed at three points. As A $(8,4)$, B $(13,6)$ and $C(12,9)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
145. If three charges $\mathrm{Q} 1=-1.4 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=8 \times 10^{-6}$ Coulomb and $\mathrm{Q} 3=-3 \times 10^{-5}$ Coulomb are placed at three points. As A $(9,8), B(1,12)$ and $C(7,2)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
146. If three charges $\mathrm{Q} 1=4.9 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=-4.9 \times 10^{-5}$ Coulomb and $\mathrm{Q} 3=6.3 \times 10^{-5}$ Coulomb are placed at three points. As A $(4,9), B(5,8)$ and $C(17,9)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
147. If three charges $\mathrm{Q} 1=6.4 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=-7.2 \times 10^{-5}$ Coulomb and $\mathrm{Q} 3=0.000144$ Coulomb are placed at three points. As $A(2,7), B(13,3)$ and $C(7,3)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
148. If three charges $Q_{1}=0.000126$ Coulomb, $Q_{2}=-7.2 \times 10^{-5}$ Coulomb and $Q_{3}=6.3 \times 10^{-5}$ Coulomb are placed at three points. As $A(4,6), B(13,3)$ and $C(10,8)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point P of $A B$ line.
149. If the Charge of a particle is 1.08×10^{-5} Coulomb and is at a distance of 0.2 meter from a positve charge of 2.16×10^{-6} Coulomb . Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
150. If the Charge of a particle is -1.2×10^{-6} Coulomb and is at a distance of 1.2 meter from a positve charge of -1.44×10^{-6} Coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
151. If three charges $Q_{1}=3.2 \times 10^{-5}$ Coulomb, $Q_{2}=-6.4 \times 10^{-5}$ Coulomb and $Q_{3}=0.000168$ Coulomb are placed at three points. As A $(2,9), B(10,11)$ and $C(8,17)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point P of $A B$ line.
152. If Four charges $Q_{1}=-1.8 \times 10^{-5}$ Coulomb, $Q_{2}=1.2 \times 10^{-5}$ Coulomb, $Q_{3}=-2.6 \times 10^{-5}$ Coulomb $\mathrm{Q} 4=$ 3.2×10^{-5} Coulomb are placed at three points. As A $(5,7), B(6,3), C(4,10)$ and $D(6,2)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point P of AB .
153. If the Charge of a particle is -2.4×10^{-6} Coulomb and is at a distance of 0.8 meter from a positve charge of -1.92×10^{-6} Coulomb . Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
154. If three charges $Q_{1}=-3.8 \times 10^{-5}$ Coulomb, $Q_{2}=1.4 \times 10^{-5}$ Coulomb and $Q_{3}=-4 \times 10^{-5}$ Coulomb are placed at three points. As $A(3,7), B(3,6)$ and $C(2,3)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point P of AB line.
155. If three charges $Q_{1}=-1.7 \times 10^{-5}$ Coulomb, $Q_{2}=8 \times 10^{-6}$ Coulomb and $Q_{3}=-2 \times 10^{-5}$ Coulomb are placed at three points. As A $(2,6), B(1,6)$ and $C(18,16)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point P of AB line.
156. If the Charge of a particle is -3×10^{-7} Coulomb and is at a distance of 1.2 meter from a positve charge of 3.6×10^{-7} Coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
157. If three charges $Q_{1}=-1.1 \times 10^{-5}$ Coulomb, $Q_{2}=8 \times 10^{-6}$ Coulomb and $Q_{3}=-2.5 \times 10^{-5}$ Coulomb are placed at three points. As $\mathrm{A}(5,8), \mathrm{B}(10,11)$ and $\mathrm{C}(13,18)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point P of AB line.
158. If the Charge of a particle is -1.2×10^{-6} Coulomb and is at a distance of 0.4 meter from a positve charge of -4.8×10^{-7} Coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
159. If the Charge of a particle is -9×10^{-7} Coulomb and is at a distance of 0.4 meter from a positve charge of 3.6×10^{-7} Coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
160. If three charges $Q_{1}=3.6 \times 10^{-5}$ Coulomb, $Q_{2}=-1.8 \times 10^{-5}$ Coulomb and $Q_{3}=1.5 \times 10^{-5}$ Coulomb are placed at three points. As $A(1,4), B(2,3)$ and $C(4,4)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point P of AB line.
161. If Four charges $Q_{1}=2.7 \times 10^{-5}$ Coulomb, $Q_{2}=-2.4 \times 10^{-5}$ Coulomb, $Q_{3}=0.000108$ Coulomb $\mathrm{Q} 4=-$ 7.2×10^{-5} Coulomb are placed at three points. As $\mathrm{A}(5,5), \mathrm{B}(11,13), \mathrm{C}(7,7)$ and $\mathrm{D}(-1,21)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point P of $A B$.
162. If Four charges $Q_{1}=0.000133$ Coulomb, $Q_{2}=-5.6 \times 10^{-5}$ Coulomb, $Q_{3}=0.000266$ Coulomb $\mathrm{Q} 4=-2.1 \times 10^{-5}$ Coulomb are placed at three points. As A $(3,3), B(13,-1), C(1,-2)$ and $D(4,11)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point P of AB .
163. If three charges $Q_{1}=3.9 \times 10^{-5}$ Coulomb, $Q_{2}=-2.4 \times 10^{-5}$ Coulomb and $Q_{3}=3.3 \times 10^{-5}$ Coulomb are placed at three points. As A $(7,2), B(7,3)$ and $C(18,14)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point P of AB line.
164. If the Charge of a particle is 3.6×10^{-6} Coulomb and is at a distance of 0.6 meter from a positve charge of 2.16×10^{-6} Coulomb . Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
165. If the Charge of a particle is 3.6×10^{-6} Coulomb and is at a distance of 0.2 meter from a positve charge of 7.200001×10^{-7} Coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
166. If Four charges $Q_{1}=2.4 \times 10^{-5}$ Coulomb, $Q_{2}=-2.1 \times 10^{-5}$ Coulomb, $Q_{3}=5.1 \times 10^{-5}$ Coulomb Q4 $=-$ 1.5×10^{-5} Coulomb are placed at three points. As A $(9,6), B(5,1), C(11,9)$ and $D(2,9)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point P of AB .
167. If three charges $Q_{1}=4.2 \times 10^{-5}$ Coulomb, $Q_{2}=-5.4 \times 10^{-5}$ Coulomb and $Q_{3}=0.000108$ Coulomb are placed at three points. As A $(6,5), B(14,1)$ and $C(2,11)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point P of AB line.
168. If Four charges $Q_{1}=3.6 \times 10^{-5}$ Coulomb, $Q_{2}=-5.4 \times 10^{-5}$ Coulomb, $Q_{3}=0.00015$ Coulomb $\mathrm{Q} 4=-7.2 \times 10^{-5}$ Coulomb are placed at three points. As $\mathrm{A}(0,5), \mathrm{B}(12,4), \mathrm{C}(5,0)$ and $\mathrm{D}(6,11)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point P of AB .
169. If the Charge of a particle is 1.8×10^{-6} Coulomb and is at a distance of 0.6 meter from a positve charge of 1.08×10^{-6} Coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
170. If the Charge of a particle is 3.6×10^{-6} Coulomb and is at a distance of 1.4 meter from a positve charge of 5.04×10^{-6} Coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
171. If Four charges $Q_{1}=0.000104$ Coulomb, $Q_{2}=-4 \times 10^{-5}$ Coulomb, $Q_{3}=4 \times 10^{-5}$ Coulomb Q4 $=-0.000176$ Coulomb are placed at three points. As A (6,2$),$ B ($4,-2), C(0,-2)$ and D $(-4,25)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point P of $A B$.
172. If three charges $Q_{1}=4.5 \times 10^{-5}$ Coulomb, $Q_{2}=-3.6 \times 10^{-5}$ Coulomb and $Q_{3}=4.5 \times 10^{-5}$ Coulomb are placed at three points. As A $(8,2), B(9,10)$ and $C(7,19)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point P of AB line.
173. If Four charges $Q_{1}=0.00012$ Coulomb, $Q_{2}=-3.2 \times 10^{-5}$ Coulomb, $Q_{3}=7.2 \times 10^{-5}$ Coulomb Q4 $=-0.000112$ Coulomb are placed at three points. As A $(9,1), \mathrm{B}(6,13), \mathrm{C}(14,2)$ and $\mathrm{D}(4,4)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point P of $A B$.
174. If Four charges $Q_{1}=6 \times 10^{-6}$ Coulomb, $Q_{2}=-2.1 \times 10^{-5}$ Coulomb, $Q_{3}=4.5 \times 10^{-5}$ Coulomb Q4 $=-6.6 \times 10^{-5}$ Coulomb are placed at three points. As A (4,1), B (3,4$), \mathrm{C}(2,19)$ and D $(-3,-2)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point P of $A B$.
175. If the Charge of a particle is 3.6×10^{-6} Coulomb and is at a distance of 0.8 meter from a positve charge of 2.88×10^{-6} Coulomb . Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
176. If Four charges $Q_{1}=4.5 \times 10^{-5}$ Coulomb, $Q_{2}=-3.6 \times 10^{-5}$ Coulomb, $Q_{3}=0.000342$ Coulomb Q4 $=-0.000144$ Coulomb are placed at three points. As A (1,2), B (3,0$), \mathrm{C}(9,4)$ and D $(0,21)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point P of AB .
177. If three charges $\mathrm{Q} 1=5.5 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=-4.5 \times 10^{-5}$ Coulomb and $\mathrm{Q} 3=0.00013$ Coulomb are placed at three points. As A $(9,9), B(10,9)$ and $C(8,9)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
178. If three charges $\mathrm{Q} 1=-1.7 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=7 \times 10^{-6}$ Coulomb and $\mathrm{Q} 3=-2.4 \times 10^{-5}$ Coulomb are placed at three points. As $\mathrm{A}(3,7), \mathrm{B}(2,1)$ and $\mathrm{C}(3,3)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
179. If three charges $\mathrm{Q} 1=4 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=-4 \times 10^{-5}$ Coulomb and $\mathrm{Q} 3=9 \times 10^{-5}$ Coulomb are placed at three points. As $A(7,9), B(12,12)$ and $C(14,7)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
180. If the Charge of a particle is 3×10^{-6} micro coulomb and is at a distance of 0.4 meter from a positve charge of 1.2×10^{-6} micro coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
181. If three charges $\mathrm{Q} 1=-4 \times 10^{-6}$ Coulomb, $\mathrm{Q} 2=6 \times 10^{-6}$ Coulomb and $\mathrm{Q} 3=-2.4 \times 10^{-5}$ Coulomb are placed at three points. As $A(2,9), B(6,8)$ and $C(13,11)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
182. If three charges $\mathrm{Q} 1=2 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=-1.8 \times 10^{-5}$ Coulomb and $\mathrm{Q} 3=1 \times 10^{-5}$ Coulomb are placed at three points. As $A(8,4), B(5,13)$ and $C(19,12)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
183. If the Charge of a particle is 1.2×10^{-6} micro coulomb and is at a distance of 0.2 meter from a positve charge of 2.4×10^{-7} micro coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
184. If Four charges $\mathrm{Q} 1=9.1 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=-3.5 \times 10^{-5}$ Coulomb, $\mathrm{Q} 3=0.000175$ Coulomb $\mathrm{Q} 4=-0.000147$ Coulomb are placed at three points. As A (4,7), B (5,3), C (7,9) and D ($-3,25$) then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
185. If Four charges $\mathrm{Q} 1=-2 \times 10^{-6}$ Coulomb, $\mathrm{Q} 2=6 \times 10^{-6}$ Coulomb, $\mathrm{Q} 3=-2 \times 10^{-6}$ Coulomb $\mathrm{Q} 4=6 \times 10^{-6}$ Coulomb are placed at three points. As A (2,0) , B ($13,-2$), C ($11,-2$) and D (3,24) then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
186. If three charges $\mathrm{Q} 1=8 \times 10^{-6}$ Coulomb, $\mathrm{Q} 2=-3.6 \times 10^{-5}$ Coulomb and $\mathrm{Q} 3=4.8 \times 10^{-5}$ Coulomb are placed at three points. As $A(2,9), B(8,5)$ and $C(4,7)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
187. If Four charges $\mathrm{Q} 1=1.5 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=-2 \times 10^{-5}$ Coulomb, $\mathrm{Q} 3=0.000195$ Coulomb $\mathrm{Q} 4=-6.5 \times 10^{-5}$ Coulomb are placed at three points. As A (4,8) , B (11,1) , C ($0,-2$) and D ($4,-4$) then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
188. If the Charge of a particle is 6×10^{-6} micro coulomb and is at a distance of 1.2 meter from a positve charge of 7.2×10^{-6} micro coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
189. If three charges $\mathrm{Q} 1=2.4 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=-4.2 \times 10^{-5}$ Coulomb and $\mathrm{Q} 3=4.2 \times 10^{-5}$ Coulomb are placed at three points. As A $(6,2), B(13,6)$ and $C(9,16)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
190. If three charges $\mathrm{Q} 1=-7 \times 10^{-6}$ Coulomb, $\mathrm{Q} 2=7 \times 10^{-6}$ Coulomb and $\mathrm{Q} 3=-4 \times 10^{-6}$ Coulomb are placed at three points. As $A(8,2), B(5,8)$ and $C(1,12)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
191. If Four charges $\mathrm{Q} 1=5.5 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=-2.5 \times 10^{-5}$ Coulomb, $\mathrm{Q} 3=4 \times 10^{-5}$ Coulomb $\mathrm{Q} 4=-0.00014$ Coulomb are placed at three points. As A $(8,4), B(13,11), C(4,9)$ and $D(0,23)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
192. If Four charges $\mathrm{Q} 1=4.5 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=-3.6 \times 10^{-5}$ Coulomb, $\mathrm{Q} 3=6.3 \times 10^{-5}$ Coulomb $\mathrm{Q} 4=-$ 0.000153 Coulomb are placed at three points. As $\mathrm{A}(8,8), \mathrm{B}(2,-1), \mathrm{C}(11,15)$ and $\mathrm{D}(2,-2)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
193. If the Charge of a particle is 2.7×10^{-6} micro coulomb and is at a distance of 1.2 meter from a positve charge of 3.24×10^{-6} micro coulomb . Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
194. If three charges $\mathrm{Q} 1=-1 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=8 \times 10^{-6}$ Coulomb and $\mathrm{Q} 3=-1.6 \times 10^{-5}$ Coulomb are placed at three points. As $A(9,3), B(11,10)$ and $C(8,4)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
195. If the Charge of a particle is -3×10^{-6} micro coulomb and is at a distance of 0.8 meter from a positve charge of -2.4×10^{-6} micro coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
196. If three charges $\mathrm{Q} 1=1 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=-2.5 \times 10^{-5}$ Coulomb and $\mathrm{Q} 3=6.999999 \times 10^{-5}$ Coulomb are placed at three points. As A $(3,6), B(7,11)$ and $C(18,14)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of $A B$ line.
197. If Four charges $\mathrm{Q} 1=9.6 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=-2.4 \times 10^{-5}$ Coulomb, $\mathrm{Q} 3=0.000204$ Coulomb $\mathrm{Q} 4=-3 \times 10^{-5}$ Coulomb are placed at three points. As $A(6,6), B(8,6), C(1,11)$ and $D(7,16)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
198. If the Charge of a particle is 1.8×10^{-6} micro coulomb and is at a distance of 0.4 meter from a positve charge of 7.200001×10^{-7} micro coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
199. If Four charges $\mathrm{Q} 1=2.4 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=-3.2 \times 10^{-5}$ Coulomb, $\mathrm{Q} 3=3.2 \times 10^{-5}$ Coulomb Q4 $=-$ 3.2×10^{-5} Coulomb are placed at three points. As A $(2,6), B(-1,5), C(9,12)$ and $D(5,19)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
200. If three charges $\mathrm{Q} 1=-7 \times 10^{-6}$ Coulomb, $\mathrm{Q} 2=7 \times 10^{-6}$ Coulomb and $\mathrm{Q} 3=-7 \times 10^{-6}$ Coulomb are placed at three points. As $A(6,9), B(4,8)$ and $C(8,9)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
201. If the Charge of a particle is -1.5×10^{-6} micro coulomb and is at a distance of 0.2 meter from a positve charge of -3×10^{-7} micro coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
202. If three charges $\mathrm{Q} 1=-2.6 \times 10^{-5}$ Coulomb, $\mathrm{Q} 2=1.6 \times 10^{-5}$ Coulomb and $\mathrm{Q} 3=-2 \times 10^{-5}$ Coulomb are placed at three points. As A $(3,1), B(1,7)$ and $C(7,14)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
203. If the Charge of a particle is -6×10^{-7} micro coulomb and is at a distance of 1.2 meter from a positve charge of -7.200001×10^{-7} micro coulomb . Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
204. If the Charge of a particle is -6×10^{-7} micro coulomb and is at a distance of 0.2 meter from a positve charge of -1.2×10^{-7} micro coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
205. If the Charge of a particle is -6×10^{-7} micro coulomb and is at a distance of 0.8 meter from a positve charge of -4.8×10^{-7} micro coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
206. If the Charge of a particle is -6×10^{-7} micro coulomb and is at a distance of 0.4 meter from a positve charge of -2.4×10^{-7} micro coulomb . Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
