More triangle geometry

1. You should be able to construct all 4 triangle centers (Centroid, Orthocenter, Circumcenter, Incenter).
2. Describe or define Feuerbach circle.
3. You should be comfortable using the trace and locus tools in GeoGebra. Explain how you can draw a Feuerbach circle as a locus of (a) certain point(s).
4. Triangle $A B C$ has the orthocenter O. What is the orthocenter of the triangle $A B O$? Prove it.
5. Triangle $A B C$ has the orthocenter O. Describe the relationship between the Feuerbach circle of $A B C$ and Feuerbach circle of BCO. Prove your answer.
6. Construct all 4 triangle centers

In order to create a centroid, create polygon with three points. Find midpoints of all three sides, connect midpoint to opposite vertex of triangle. medians.
Orthocenter - where all altitudes cross - can be inside of outsider
i. Create perpendicular line from vertex to opposite side

Circumcenter - make midpoint on each side and create perpendicular line on midpoints - intersection of perpendicular lines - can be inside or outside
2. Feuerbach Circle-create triangle then make orthocenter and circumcircle, then find midpoint from orthocenter to circumcircle, then trace from midpoint to circumcircle. The circle that is traced is the feuerbach circle.
9 point circle-3 midpoints from side lengths, 3 feet of altitudes and 3 midpoints from orthocenter to vertice.
Create triangle and midpoint of each side ($3 / 9$ points are these midpoints)
Create perpendicular line from each vertex to opposite side (orthocenter)
i. Create points where altitude and triangle sides intersect

Create line from vertex to orthocenter and create midpoint of that line segment Extra information not discussed in class:
ii. Create circumcenter by create perpendicular line from midpoints of triangle
iii. Create line segment between orthocenter and circumcenter, find midpoint of that segment THIS IS center of circle

3. Explain how you can draw a Feuerbach circle as a locus of certain points create triangle then make orthocenter and circumcircle, then find midpoint from orthocenter to circumcircle, then trace from midpoint to circumcircle. The circle that is traced is the feuerbach circle.
4. What is the orthocenter of the triangle ABO ? The orthocenters are vertices

5. Describe relationship
 Geogebra File

Triangle similarity conditions

6. Discuss the difference between the definition of polygon similarity and similarity of general "figures".
7. Define similar triangles.
8. List triangle similarity conditions.
9. Formulate and prove the Side-splitter theorem. https://www.geogebra.org/m/PdGTJvDC
10. Formulate and prove corollary to the Side-splitter theorem.
11. Briefly discuss the importance of the Side-splitter theorem (and/or its corollary).
12. Prove the aa triangle similarity condition. https://www.geogebra.org/m/WT6nJZ6V
13. Using the aa similarity theorem and side-splitter theorem, outline the idea of the proof of sas similarity theorem (you don't have to prove it, just outline the idea).
14. For general blob - two shapes are similar when there is one to one correspondence for any two pairs of line segment ratios - check all such pairs in order to say that they are similar - this definition is conceptual because it gives us an idea but it is not practical

a. When you have a blob you look at one to one ratio

7. Similar Triangles have equal corresponding angles and proportional side lengths.
8. AA, SAS and SSS, ASA?
9.

Side Splitter Theorem

$$
\text { If } F G \| B C \text { then } \frac{|A F|}{|F B|}=\frac{|A G|}{|G C|}
$$

$\frac{|A F|}{|F B|}=\frac{\text { Area } \triangle A F G}{\text { Area } \triangle F B G}$ and $\frac{\text { Area } \triangle A F G}{\text { Area } \Delta F G C}=\frac{|A G|}{|G C|}$
 are equal, when are they going to be equal?
$\rightarrow F G$ is the base of $\triangle F G B$ and $\triangle F G C$
$\rightarrow \therefore$ areas in the denominator must be same which means area RATIOS are same!

10. The bottom of the above photo is the corollary
11. Helps to prove triangle similarity theorems. Ex: AA
12.

Triangle similarity applications

14. Formulate and prove Euclid's theorems about the height and legs in a right triangle. https://www.geogebra.org/m/tuYgVpRT
15. Use the previous result to prove the Pythagorean theorem.
16. The altitude to the hypotenuse of a right triangle is the geometric mean of the segments into which the altitude divides the hypotenuse. Try to make sense of what the theorem is saying. Draw a picture to explain it. Prove the theorem.
17.

$\triangle A B C \sim A C B D$	$a a+$ share $\angle B$ is t
$A A B C \sim \triangle A D C$	$a a+$ share $\angle A$ is t
$\triangle A C D \sim \triangle C D B$	

$$
\begin{aligned}
& \triangle A C D \\
& \text { C. } \triangle C D B \\
& c_{b}^{A} C_{2}^{b} c_{2} \\
& \angle C_{2}+\angle A=90^{\circ} \quad \angle C_{1}+\angle B=90^{\circ} \\
& \angle C_{1}+\angle C_{2}=90^{\circ} \\
& \therefore \angle C_{2}+\angle A=\angle C_{1}+\angle C_{2} ; \quad \therefore \angle C_{1}+\angle B=\angle C_{1}+\angle C_{2} \\
& -\angle C_{2} \quad-\angle C_{2} \\
& -\angle C_{1} \quad-\angle C_{1} \\
& \angle A=\angle C_{1} \\
& \therefore \angle D=\angle D \\
& \angle A=\angle C_{1} \\
& \angle B=\angle C_{2}
\end{aligned}
$$

\therefore through aa, $\triangle A D C \sim \triangle D C B$

$$
h^{2}=C_{a} \cdot C_{b} \text { Euclid's Theorem }
$$ to Height

$$
\triangle A B C \sim \triangle C B D
$$

$$
\frac{a}{c a} \times \frac{b}{b} \times \frac{c}{a}
$$

$$
a^{2}=c_{a} \cdot c
$$

$\triangle A B C \sim \triangle A D C$

$$
\begin{aligned}
& \frac{d}{h}=\frac{b}{c b}=\frac{c}{b} \\
& b^{2}=c^{\prime} c b
\end{aligned}
$$

Use
$\left.\begin{array}{l}a^{2}=c \cdot c a \\ b^{2}=c \cdot c_{b}\end{array}\right]$ to prove $c^{2}=a^{2}+b^{2}$

$$
h^{2}=C a \cdot C b
$$

Proving Pythagorean Theorem:
known $C=$ Cat $_{0}$

$$
\begin{gathered}
a^{2}+b^{2}=c c a+c c_{b} \\
a^{2}+b^{2}=c\left(c a+c_{b}\right) \\
a^{2}+b^{2}=c \cdot c \\
a^{2}+b^{2}=c^{2}
\end{gathered}
$$

15.

using $\left.\begin{array}{rl}a^{2} & =c \cdot c_{a} \\ b^{2} & =c \cdot c_{b} \\ h^{2} & =c_{a} \cdot c_{b}\end{array}\right\}$ to prove $a^{2}+b^{2}=c^{2}$

17. D is the midpoint of $A B, E$ is the midpoint of $A C$. (See the picture; The segment $D E$ is called midsegment.).
a. Identify similar triangles in the picture and provide proper justification.
b. $D E \| B C$. Prove it.
c. $2 x|D E|=|B C|$. Prove it.

If you need hints, go to: https://www.geogebra.org/m/TeXKJjVc
18. Using the same triangle $A B C$ and points D, E :
a. Show that F is the centroid of $A B C$.
b. Identify similar triangles in the picture (justify your selection) that will help you prove that the Centroid
 splits medians in the $2: 1$ ratio. More specifically, prove that: $2 x|D F|=|F C|$. If you need hints, go to (copy-paste the link to browser if clicking does not help): https://www.geogebra.org/m/ScZJ3mqC
19. Use triangle similarity to solve for the missing dimensions. Don't forget to justify why the triangles you chose are similar.

https://www.geogebra.org/m/W3MTSFDc

17.
18.
a.

therefore $2 x$ is $2 / 3$ the median although it is 2 times x.
b. Because \rightarrow DE is $\frac{1}{2}$ of $C B$

* Side Spitting Proof

$$
\begin{aligned}
& \frac{\operatorname{Area}(\triangle A F G)}{\text { Area }(\triangle F B G)}=\frac{\frac{1}{2} b_{1} h_{1}}{\frac{1}{2} b_{2} h / 2} \quad \begin{array}{l}
b_{1}=|A F| \\
b_{2}=|F B|
\end{array} \\
& \left.\frac{\mid \text { base }}{1 \text { base }} \text { (rato) }\right)=\frac{|A F|}{|F B|}=\frac{|A G|}{|G C|}
\end{aligned}
$$

reciprocals must also be true

$$
\frac{|F B|}{|A F|}=\frac{|G C|}{|A G|}
$$

can you prove to be true as well? UTS $\frac{|A B|}{|A F|}=\frac{|A C|}{|A G|}$ COYDllanlyy

$$
\begin{aligned}
\frac{|A B|}{|A F|} & =\left[\frac{|A F|+|F B|}{|A F|}=\frac{|A G|+|G C|}{|A G|}\right]=\frac{|A C|}{|A G|} \\
& =\frac{|A F|}{|A F|}+\frac{|F B|}{|A F|}=\frac{|A G|}{|A G|}+\frac{|G C|}{|A G|}
\end{aligned}
$$

Area of $\triangle B F G$
$\delta^{\circ O}=$ Area of $\triangle C G F$

AA Similarity Theorem
[If two pairs of corresponding angles in two triangles are congment, then the triangles are simitar.
\rightarrow Assume $|A B|<|A, B$,

From Side-Spliting Theorem we have
$\frac{|A B|}{\left|A_{1} B_{1}\right|}=\frac{|A C|}{\left|A_{1} C_{1}\right|}$ show that the same vatic $\frac{\left|B_{C}\right|}{\left|B_{1} C_{1}\right|}$
some ratio

$$
\frac{A_{1} B^{\prime}}{A_{1} B_{1}}=\frac{A_{1} C^{\prime}}{A_{1} C_{1}}
$$

