Scott G. Smith

Paper Folding and Conic Sections
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ne sign of a good problem is that it offers multiple

revelations during its investigation. Another is that

it can be approached mathematically in more than
one way. Three related problems that meet both
those criteria involve paper folding and conic sec-
tions. Each problem can be demonstrated easily

with a sheet of wax paper or emulated by a geometry

drawing program like The Geometer’s Sketchpad,

yet each contains interesting mathematics whose

properties are established in nontrivial ways.
The three problems are simple to describe:

1. Draw a fixed line and a fixed point. Fold the fixed

point onto a random point on the fixed line, and
crease. Repeat many times. The creases form
tangents to, and envelop, a parabola, as shown
in figure 1.

2. Draw a circle and a fixed point inside the circle.
Fold the fixed point onto a random point of the

fixed line

a
Parabola enveloped by 44 crease lines

Given:
Straight Object |
Point P

Steps:

1. Let [D] = Random point on Straight Object j.

2. Let [k] = Segment between Point [D] and
Point P.

3. Let [E] = Midpoint of Segment [Kk].

4. Let [I] = Perpendicular to Segment [K]
through Midpoint [E].

5. Recurse onjandP.

6. Select jand P.

(b)
The Geometer's Sketchpad script for figure 1a
Fig. 1

circle, and crease. Repeat many times. The creas-
es are all tangent to and bound an ellipse, as dis-
played in figure 2.
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Ellipse bounded by 176 crease lines
Given:
Circle c1
Point C
Steps:

1. Let [D] = Random point on Circle c1.

2. Let [j] = Segment between Point [D] and
Point C.

3. Let [E] = Midpoint of Segment [j].

4. Let [k] = Perpendicular to Segment [j] through
Midpoint [E].

5. Recurse on c1and C.

6. Selectci1and C.

(b)
The Geometer’s Sketchpad script for figure 2a
Fig. 2

3. As in the second example, draw a circle and a
fixed point, but this time locate the point outside
the circle. Fold the fixed point onto a random
point on the circle, and crease. When this fold is
repeated many times, the lines will all be tan-
gent to a hyperbola, as figure 3 shows.

Although paper folding is a good hands-on activi-
ty—particularly if the teacher draws the point, line,
or circle with a marker on wax paper ahead of time
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Fig. 3
Hyperbola bounded by 176 crease lines

for the students, it can be emulated by a graphing
program like The Geometer’s Sketchpad. These
sketches are facilitated greatly by the recursive
ability (LOOP) of a Sketchpad script. The scripts to
produce figures 1a and 2a are given as figures 1b
and 2b, respectively. After producing the sketches,
we move point P around to see how its position,
that is, the focal distance, affects the shape of the
particular conic. In figure 1, moving P farther from
the fixed line produces a broader parabola; moving
it closer to the fixed line makes the parabola sharp-
er. Moving P in figure 2 close to the circle’s center
makes for a rounded ellipse, whereas moving it
close to the circle produces an elongated ellipse. In
figure 3, the closer P is to the circle, the sharper
the hyperbola is.

The proofs showing why these paper folds produce
conic sections are accessible to students of second-
year algebra. We take each of them in turn.

PARABOLA

Figure 4 shows fixed point P folded onto point P'
(and several others) on fixed line L. At P', we con-
struct a perpendicular to line L, hitting the crease
line at A. Because the crease line is the perpendicu-
lar bisector of PP', A is equidistant from the fixed

/crease line

Fig. 4
Crease puts point on parabola.
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point and the fixed line, hence on a parabola whose
focus is P and whose directrix is L. We need to
show that the crease line through A is indeed the
tangent to the parabola, and we need the parabola’s
equation.

The standard derivation of a parabola equates the
distance from a point A(x, y) to the focus at P(0, ¢)
and to a point on line y = —c. Instead, we use the
paper-folding properties. See figure 5. Let MA be
the crease line. Then M is the midpoint of PP', with
coordinates (x/2, 0). The slope of PP'is

c—(=c)
—-X

s0 the slope of MA is x/2¢. The slope of MA could
also be computed as the slope between A and M,

)

y-0_2y
EEA
2

Equating the two yields x? = 4cy, or

) x*

Y=4e
the standard form of an up-and-down parabola
whose vertex is at the origin. Equation (1) reveals
why moving P farther from the fixed line in figure
1 produces a broader parabola: as ¢ increases, the
y-value for the same x decreases.

/,»""é'rease line
A, y)

P(0, ¢)

P'(x,—c) y=-c

Fig. 5
Coordinates for parabola paper-folding proof

We can next prove that the crease lines are actu-
ally tangent to the parabola. If the parabola is
given by equation (1), then the slope of the tangent
line is y' = x/2¢, which agrees with the formula
derived in the preceding paragraph.

Before we move to the ellipse, we can prove the re-
flective property of the parabola. We refer to figure
4. We know that MA’ is the perpendicular bisector
of PP'. Then by congruent triangles and vertical
angles, ZPAM = £ XAY. A light source at point P
would therefore reflect off the parabola at multiple
points, all in paths parallel to the axis of the
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solar ovens

parabola (P'A’ is perpendicular to L, as is the axis
of the parabola.) Likewise, sound waves coming
from afar, parallel to the parabola’s axis, would be
concentrated at a microphone placed at point P.
This result is used in designing mirrors for tele-
scopes, radio telescopes, and solar ovens.

ELLIPSE

Figure 6 shows fixed point P folded onto point P'
(and others) of a circle whose center is O. We draw
OP', intersecting the crease line at A. Therefore,
P'A + AO equals the radius of the circle. But
because the crease line is the perpendicular bisec-
tor of PP', AP must equal AP'. Therefore PA + AO
equals the radius, which is a fixed value. The sum
of the distances from A to points P and O is con-
stant, so by definition, A is on the ellipse with foci
O and P. We still need to show that the crease line
is a tangent to the ellipse. We therefore need to
derive the equation of the ellipse.

Fig. 6
Crease puts point on ellipse.

\P'(@. b)
(@ +d)/2, bl2)

00 0) P(d,;()) 0

Fig. 7
Coordinates for ellipse paper-folding proof

The derivation for the ellipse and hyperbola—
they are actually the same—and drawing them—
are not for those with little practice in or respect for
symbol manipulation. In figure 7, we note that the
circle is centered at the origin and has a radius of r
and that fixed point P is located at (d, 0). Let the
coordinates of P' on circle O be (a, b). The fold line
goes through midpoint M,

a+ d b
22/
Depending on the location of P', we draw, or
extend, OP' to meet the crease line at A(x, y). The

slope of PP' is bl(a — d), so MA, with a slope of
(d — a)/b, could be expressed using point-slope as

o oGl

Because P'is on the circle, a® + b? = r%, and by
similar triangles (dropping perpendiculars from P'
and A to the x-axis—not shown in the figure),

and

Therefore,

3) and

__ny

T
Substituting for a and b into equation (2) and sev-
eral lines of simplification, shown in figure 8, lead
to the intermediate result

(4) 2r\xt+y2 - 2dx =r? —d2

By getting rid of the radical, collecting terms, and
completing the square, we can eventually simplify
equation (4) to

(-4
-5 2
(5) 2/ Y=,

b _ d- d
petreoz)
]‘76-61 ‘:-(a/—a)(Zzt"d—a{_)
Zyé—la‘:Za/x—la/w-a".— d*

Lot Z=xtry™
2 L Ty ) /’/(
7( (V" = dy-2x (= f)
%fx‘+f)=é—(}<’+f)+zdx~
207z -2dx% =r - Jd*
20T dde= ool

Fig. 8
Simplification that leads to equation (4)

dz
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the equation of an ellipse whose center is (d/2, 0)
and whose major axis is r. Details are left to the
reader. (I have waited decades to write that state-
ment.) We have an analytic explanation why mov-
ing P close to the circle produced a rounded ellipse.
The ratio of the major axis to the minor axis is

2 _ g2

Therefore, as point P approaches the center, the
denominator approaches r, and the ellipse is more
circular. As P approaches the circle, d approaches 7,
the denominator approaches 0, and the ellipse is
more oblong.

To prove that the crease lines are tangents to the
ellipse, we take the derivative of equation (5):

d
2<x_2) 209" o
2z et
4 4

Solving for y', we obtain

. (x - %)(dz -r?
y = T
From figure 7,

51y _b—-0
slope m(PP)_m.

Substituting from equations (3) makes
- ry
PP)z=—————.

m(PP) rx — d\x? + y?

Therefore,

2 2 _
m(MA):d x*+y Ty
ry

It is not at all apparent that y' = m(MA). We use
the intermediate result in equation (4) to obtain
r?—d? + 2dx
—

2 2 —
X4 +
y r

We multiply both sides by d, subtract rx from both
sides, and divide both sides by ry. So

d(r*=d*+2dx) -
d\x? +y?—rx _ 2r
ry ry

The left-hand side is m(MA). Simplifying the right-
hand side does in fact give

e

2

The details are again left to the reader. Although
this proof emanated from the figure for the ellipse,
the algebra is exactly the same for the hyperbola.
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Ellipses have the reflective property that trajec-
tories emanating from one focus reflect off the
curve and converge at the other focus. In figure 6,
because MA is the tangent at A, we would need to
show that ZPAM = ZOAY. Since A is on the perpen-
dicular bisector of PP', ZPAM = /P'AM by congru-
ent triangles, Z/P'AM = Z/OAY by vertical angles,
and transitivity gives the result that we want.

HYPERBOLA

The proof for the paper-folded hyperbola is similar
to that for ellipses. In figure 9, exterior point P is
folded onto P' (and many others) of the circle whose
center is 0. We draw line OP' until it meets the
crease line MA at A. We note that AO — AP' equals
the radius of the circle. Again, because the crease
line is the perpendicular bisector of PP, AP = AP,
s0 AO - AP equals the radius, that is, a fixed value.
The difference between the distances from A to two
fixed points is a constant, so A is one point of a
hyperbola whose foci are O and P. We still need to
establish that MA’ is a tangent to the curve. To do
so0, we need the equation of the hyperbola.

The coordinates of O, P, P', M, and A for figure
10’s hyperbola are the same as for figure 7’s
ellipse, as is the derivation. The only difference is
that d? — r? is greater than 0, instead of less than 0,
so0 equation (5) becomes

d2
x__
( 2)_ ¥y

R

4 4

(6)

the equation of a hyperbola whose center is (d/2, 0)
and whose transverse axis is r. Furthermore, the
slope of the asymptotes is

&7

r

*

As P approaches the circle, d approaches r, the
slope of the asymptotes approaches 0, and the

o i
e H 1

fcrease line

Fig. 9
Crease puts point on hyperbola.

The proof
for the
paper-folded
hyperbola is
similar to
that for the
ellipse
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icrease line

Fig. 10
Coordinates for hyperbola paper-folding proof

hyperbola turns sharply at its vertices. As P moves
away from the circle, d approaches infinity, and the
asymptotes’ slope approaches infinity; this hyper-
bola has little curve to it. These two extreme cases
might have been observed by moving point P in fig-
ure 3 and are suggested in figures 11 and 12,
where the circle in both is x% + y? = 16; P is located
at (5, 0) as P approaches the circle and at (10, 0) as
P moves away from the circle.
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8

Fig. 11
Hyperbola generated from x? + y? = 16 and P(5, 0)

Fig. 12
Hyperbola from x? + y% = 16 and P(10, 0)

The proof that crease line MA in figure 9 is a
tangent is the same as for the crease line of the
ellipse (they share the same equation).

The reflective property for the hyperbola is not
as well known as the reflective property for the
parabola and the ellipse. If an object thrown from
one of the foci in figure 9 hits the hyperbola at
point A, its reflection is an extension of the line
from A to the other focus. If the object is thrown
from P in figure 9, it would bounce off the hyper-
bola at A (the crease line is a tangent) toward Y. We
need to show that ZPAM = /YAZ. Again, A’s being
on the perpendicular bisector of PP' and vertical
angles provide the answer. If an object is thrown
not from the “inside” of the hyperbola but from the
“outside” (say, from X in figure 9), the reflection
would be a path directed at the other focus, O.
Here, we would have to show that ZXAZ = ZOAM.
The same triangles and a second pair of vertical
angles allow us to do so.

RELATED CURIOSITIES

While generating points for the hyperbola in figure
9, I noticed that I was obtaining many more points
for the left branch than for the right. The closer
that P was to the circle, the larger the proportion of
points that were on the left branch of the hyperbola.
The reason seems to be the points of tangency from
P to the points on the circle (@; and @, in figure 13).
When P is folded onto points in minor arc @; P'Q,
(P'is an example), the generated points, for instance,
A, are on the right branch. Here, M is the midpoint,
MA is the crease line, and OP" meets MA at A.
When P is folded onto points in major arc @;RQ;

(R is an example), the generated points, for
instance, B, are on the left branch. Here, N is the
midpoint, NB is the crease line, and OR inter-
sects NB at B. |0A-AP| = |BP-BO| = fixed
distance OP, but A to O is the longer distance in the
first case, whereas B to P, the other focus, is the
longer distance in the second. This result is consis-

Fig. 13
Points of tangency separate generating
regions for left and right branches of hyperbola
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tent with analytical derivations of the hyperbola. In
addition to separating the two generating regions
for the hyperbola, @; and @, share the property
that if we try to fold P onto either, the resulting fold
line cannot intersect the line containing that point
and O to form a point on the hyperbola, because the
two lines are parallel. As a matter of fact, these fold
lines are the hyperbola’s asymptotes. But we can
see why a majority of points ended up on the left
branch—chosen randomly, more points come from
the major arc than from the minor arc. If r is the
circle’s radius and OP = d, then

2Q,0Q, = 2 arccos (r/d).

For figure 11, £Q,0Q, =~ 74°, so only 74/360, or
approximately 20 percent, of points randomly gen-
erated are on the right branch. In figure 13,
/Q;00), = 133°, so approximately 37 percent of gen-
erated points are on the right branch. The crease
lines created when P is folded onto the points of
tangency are the hyperbola’s asymptotes. Using
coordinates O (0, 0), P (d, 0), and @, (a, b), the
slopes of perpendicular lines 0@, and PQ,, and
midpoint ((a + d)/2, b/2) of PQ,, we can show that
the crease lines are the asymptotes

V(. d
==l

A similar observation can be made about the
ellipse in figure 6. More points appear to be on the
left half than on the right. If we label the ends of
the major axis B and D, as shown in figure 14, the
ends of the minor axis A and C, and M the center of
the ellipse, we can see that points on the right half
of the ellipse are generated only by points of the
minor arc subtended by ZAOC. From equation (5),
the major axis measures 7, the minor axis measures

\r?—d?, and ZAOM = arctan (AM/OM), so

ZAOC =2 arctan rZ;d2'

For instance, if r = 4 and d = 3, then ZAOC =
67°, so a random point has only a 19 percent chance

Fig.14
Paper folding favors the left half of ellipse (opposite P).
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of being on the right half of the ellipse. As P gets close to the
circle, d approaches r, the numerator approaches 0, and the
size of the arc from which right-branch points come becomes
very small.

A completely propitious discovery occurred when I forgot to
have my Sketchpad script erase the midpoints on the crease
lines for the hyperbola. Looking at the midpoints in figure 15,
we see that their locus appears to be a circle. Because each of
those points has coordinates

a+d b
2 '2)
and a® + b% = r? from figure 10, we easily see that those coordi-

nates must satisfy
d\? . o r?
(x - §) e

that is, a circle with center at (d/2, 0) and radius of /2. This
property is true, of course, for the ellipse, as well. The mid-
points of the parabola have an uninteresting locus in compari-
son—they all lie on a line halfway between the focus and the
directrix, that is, the x-axis in figure 5.

Fig. 156
Paper folding for hyperbola, showing midpoints

CONCLUSION

I was initially charmed by a simple physical activity that hides
some interesting mathematics. Pursuing the conic sections
from paper folding through The Geometer’s Sketchpad, analyt-
ic geometry and calculus became an adventure for me. I am
always delighted and reassured when the mathematics that I
sense is there is finally revealed.
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The author invites you to visit the following Web sites for non-
calculus versions of proofs that the folding lines for the parabola,
ellipse, and hyperbola are tangents to the curves:

e upper.us.edu/faculty/smith/foldapp1l.htm

e upper.us.edu/faculty/smith/foldapp2.htm Myt
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