Continuous Probability

repeated Theorem En $\begin{aligned} & \text { Gaussian } \\ & \text { stratified }\end{aligned}$
Central standardizing

$\stackrel{\text { ? }}{\stackrel{\text { B }}{2}}$ nin

Continuous Random Variables and their Probability Distributions

Continuous Random Variables

- A continuous random variable (CRV) is one that can take any value in an interval on the real number line.
- No limit on the accuracy, for example if someone's weight (kg) is given as 83 , implies the weight is between 82.5 and 83.5 , if the weight is given as 83.3 , it implies the weight is between 83.25 and 83.35 , etc..
- Therefore $\operatorname{Pr}(W=w)=0$
- from text:

In practice, considering W taking a particular value is equivalent to W taking a value in an appropriate interval.

Thus, from above:

$$
\operatorname{Pr}\left(W_{0}=83\right)=\operatorname{Pr}(82.5 \leq W<83.5)
$$

To determine the value of this probability you could begin by measuring the weight of a large number of randomly chosen people, and determine the proportion of the people in the group who have weights in this interval.

Suppose after doing this a histogram of weights was obtained as shown.

From this histogram:

$$
\begin{aligned}
\operatorname{Pr}\left(W_{0}\right. & =83)=\operatorname{Pr}(82.5 \leq W<83.5) \\
& =\frac{\text { shaded area from } 82.5 \text { to } 83.5}{\text { total area }}
\end{aligned}
$$

If the histogram is scaled so that the total area under the blocks is one, then:

$$
\begin{aligned}
\mathrm{P}\left(W_{0}=83\right) & =\operatorname{Pr}(82.5 \leq W<83.5) \\
& =\text { area under block from } 82.5 \text { to } 83.5
\end{aligned}
$$

Suppose that the sample size gets larger and the class interval width gets smaller. If theoretically this process is continued so that the intervals are arbitrarily small, the histogram can be modelled by a smooth curve, as shown in the following diagram.

The curve obtained here is of great importance for a continuous random variable.
The function f whose graph models the histogram as the number of intervals is increased is called the probability density function. The probability density function f is used to describe the probability distribution of a continuous random variable, X.

Now, the probability of interest is no longer represented by the area under the histogram, but the area under the curve. That is:

$$
\begin{aligned}
\operatorname{Pr}\left(W_{0}=83\right) & =\operatorname{Pr}(82.5 \leq W<83.5) \\
& =\text { area under the graph of the function with rule } f(w) \text { from } 82.5 \text { to } 83.5 \\
& =\int_{82.5}^{83.5} f(w) d w
\end{aligned}
$$

In general, for the continuous random variable X with density function f :

$$
\operatorname{Pr}(a<X<b)=\int_{a}^{b} f(x) d x \text { is given by the area of the shaded region. }
$$

- In order to be a probability density function a function must satisfy certain conditions.

If the range of the continuous random variable X is $[a, b]$ then the domain of its probability density function f is $[a, b]$. The probability density function will satisfy two properties:
$1 f(x) \geq 0$ for all $x \in[a, b]$ and
$2 \int_{a}^{b} f(x) d x=1$

Note that $\operatorname{Pr}(X<c)=\operatorname{Pr}(X \leq c)$

$$
=\int_{a}^{c} f(x) d x
$$

A probability density function (or its natural extension) satisfies the following two
properties:
$1 f(x) \geq 0$ for all x
$2 \int_{-\infty}^{\infty} f(x) d x=1$

Note that, since the probability of X taking any exact value is zero, then:

$$
\operatorname{Pr}(a<X<b)=\operatorname{Pr}(a \leq X<b)=\operatorname{Pr}(a<X \leq b)=\operatorname{Pr}(a \leq X \leq b)
$$

- That is, there is no difference between the numerical values of all of these expressions.

Example 1: Suppose that the random variable X has the density function with the rule:

$$
f(x)=\left\{\begin{array}{c}
c x \quad 0 \leq x \leq 2 \\
0 \quad \text { if } x>2 \text { or } x<0
\end{array}\right.
$$

a. Find the value of c that makes f a probability function;
b. Find $\operatorname{Pr}(X>1.5)$

Solution: Calculator: solve $\left(\int(c x, x, 0,2)=1, c\right)$
a. $\quad \begin{aligned} & {\left[\frac{\int_{-\infty}^{0} 0 d x+\int_{0}^{2} c x d x+\int_{2}^{\infty} 0 d x=1}{2}\right]_{0}^{2}=1} \\ & {\left[\frac{4 c}{2}\right]-\left[\frac{0}{2}\right]=1} \\ & 2 c=1 \\ & c=0.5\end{aligned}$

$$
\begin{aligned}
\operatorname{Pr}(X & >1.5)=\int_{1.5}^{2} 0.5 x d x \\
& =0.5\left[\frac{x^{2}}{2}\right]_{1.5}^{2} \\
& =0.5\left(\frac{4}{2}-\frac{2.25}{2}\right) \\
& =0.5 \times 0.875 \\
& =0.4375
\end{aligned}
$$

b.

Example 2: Consider the function f with the rule:

$$
f(x)= \begin{cases}1.5\left(1-x^{2}\right) & 0 \leq x \leq 1 \\ 0 & \text { if } x>1 \text { or } x<0\end{cases}
$$

a. Sketch the graph of f;
b. Show that f is a probability density function;
c. Find $\operatorname{Pr}(X>0.5)$.

Solution:

a.

b. $\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{1} 0.5\left(1-x^{2}\right) d x=1.5\left[x-\frac{x^{3}}{3}\right]_{0.5}^{1}=1.5\left[\left(1-\frac{1}{3}\right)-0\right]=1.5 \times \frac{2}{3}=\frac{3}{2} \times \frac{2}{3}=1$
c. $\operatorname{Pr}(X>0.5)=\int_{0.5}^{1} 0.5\left(1-x^{2}\right) d x=1.5\left[x-\frac{x^{3}}{3}\right]_{0.5}^{1}=1.5\left[\left(1-\frac{1}{3}\right)-\left(0.5-\frac{0.125}{3}\right)\right]=0.3125$

Example 3: Consider the exponential probability density function f with the rule:

$$
f(x)=\left\{\begin{array}{lc}
2 e^{-2 x} & x>0 \\
0 & x \leq 0
\end{array}\right.
$$

a. Sketch the graph of f;
b. Show that f is a probability density function;
c. Find $\operatorname{Pr}(X>1)$.

Solution:

a.

b. $\int_{-\infty}^{\infty} f(x) d x=\lim _{k \rightarrow \infty} \int_{0}^{k} 2 e^{-2 x} d x=\lim _{k \rightarrow \infty}\left[\frac{2 e^{-2 x}}{-2}\right]_{0}^{k}=\lim _{k \rightarrow \infty}\left(-e^{-2 k}\right)-\left(-e^{0}\right)=0--1=1$

Calculator: $\operatorname{limit}\left(\int\left(2 e^{-2 x}, x, o, k\right), k, \infty\right) \quad$ or $\quad \int\left(2 e^{-2 x}, x, o, \infty\right)$
c. $\operatorname{Pr}(X>1)=\lim _{k \rightarrow \infty} \int_{1}^{k} 2 e^{-2 x} d x=\lim _{k \rightarrow \infty}\left[-e^{-2 x}\right]_{1}^{k}=\lim _{k \rightarrow \infty}\left(-e^{-2 k}\right)-\left(-e^{-2}\right)=0+e^{-2}=\frac{1}{e^{2}}=0.1353$ (4d.p.)

- Ex15A 1, 2, 3, 4, 5, 6, 7, 9, 11, 15

Mean, median and mode for a continuous random variable.

Mean (Expected Value)

$$
E(X)=\int_{-\infty}^{\infty} x f(x) d x
$$

Example: Find the expected value of the random variable I which has probability density function with rule:

$$
f(x)= \begin{cases}0.5 x & 0 \leq x \leq 2 \\ 0 & x<0 \text { or } x>2\end{cases}
$$

Solution: $E(X)=\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{2} x(0.5 x) d x=\int_{0}^{2} 0.5 x^{2} d x=\left[\frac{x^{3}}{6}\right]_{0}^{2}=\frac{8}{6}-0=\frac{4}{3}$

Example: If X is the random variable with probability density function f :

$$
f(x)= \begin{cases}0.5 x & 0 \leq x \leq 2 \\ 0 & x<0 \text { or } x>2\end{cases}
$$

Find:
a. the expected value of X^{2};
b. the expected value of $e^{x}(4 \mathrm{~d} . \mathrm{p})$.

Solution:

a. $E\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} f(x) d x=\int_{0}^{2} x^{2}(0.5 x) d x=\int_{0}^{2} 0.5 x^{3} d x=\left[\frac{x^{4}}{8}\right]_{0}^{2}=\frac{16}{8}-0=2$
b. $E\left(e^{x}\right)=\int_{-\infty}^{\infty} e^{x} f(x) d x=\int_{0}^{2} e^{x}(0.5 x) d x=\int_{0}^{2} 0.5 e^{x} x d x=4.1945$

Percentiles and the Median

$50^{\text {th }}$ percentile $=\int_{-\infty}^{p} f(x) d x=0.5$
in general: the " n "

Example: The duration of telephone calls to the order department of a large company is a random variable X minutes with probability density function:

$$
f(x)= \begin{cases}\frac{1}{3} e^{\left(\frac{-x}{3}\right)} & x>0 \\ 0 & x \leq 0\end{cases}
$$

Find the value of a such that 90% of phone calls last less than a minutes.
Solution:
$\left[\begin{array}{l}\int_{0}^{a} \frac{1}{3} e^{\left(\frac{-x}{3}\right)} d x=0.9 \\ {\left[-e^{\left(\frac{-x}{3}\right)}\right]_{0}^{a}=0.9} \\ -e^{\left(\frac{-a}{3}\right)}+1=0.9 \\ -e^{\left(\frac{-x}{3}\right)}=-0.1 \\ e^{\left(\frac{-x}{3}\right)}=0.1 \\ \frac{-x}{3}=\log _{e} 0.1 \\ x=-3 \log _{e} 0.1 \approx 6.908\end{array}\right] \operatorname{solve}\left(\int\left(1 / 2 e^{\wedge}-x / 3, x, 0, a\right)=0.9, a\right)$
therefore 90% of the calls to this company last less than 6.908 minutes.
Example: Suppose the probability density function of weekly sales of topsoil, X (in tonnes), is given by the rule:

$$
f(x)=\left\{\begin{array}{ll}
2(1-x) & 0 \leq x \leq 1 \\
0 & x<0
\end{array} \text { or } \quad x>1\right.
$$

Find the median value of X and interpret the result.

Solution:

$\int_{0}^{a}(2-2 x) d x=0.5$
$\left[2 x-x^{2}\right]_{0}^{a}=0.5$
$2 m-m^{2}=0.5$
$2 m^{2}-4 m+1=0$
$m=0.293$ or $m=1.707$ solve $\left(\int(2-2 x, x, 0, a)=0.5, a\right)$

Because $0 \leq x \leq 1$ the median $=0.293$ tonnes. This means 50% of the weekly sales will be less than 0.293 tonnes.

Mode

- the most common value of the variable X.
- for the probability density function this will be the local maximum.

Example: Find the mode of the CRV, X with the probability density function:

$$
f(x)= \begin{cases}12 x^{2}(1-x) d x & 0 \leq x \leq 1 \\ 0 & x<0 \text { or } x>1\end{cases}
$$

Solution:

$f(x)=12 x^{2}-12 x^{3}, \quad x \in[0,1]$
$f^{\prime}(x)=24 x-36 x^{2}=0$
$12 x(2-3 x)=0$
$x=0$ or $x=\frac{2}{3}$
Maximumat $x=\frac{2}{3}$

$\operatorname{fmax}(f(x), x) \mid 0 \leq x \leq 1$

- Ex15B 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 15

Measures of Spread

$\operatorname{Var}(X)=\sigma^{2}=E\left[(X-\mu)^{2}\right]=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x=E\left(X^{2}\right)-\mu^{2}$
$s d(X)=\sqrt{\operatorname{Var}(X)}$
Example: Find the variance and standard deviation of the random variable X which has the probability density function with rule:

$$
f(x)= \begin{cases}0.5 x & 0 \leq x \leq 2 \\ 0 & x<0 \text { or } x>2\end{cases}
$$

Solution:

$$
\begin{aligned}
& \operatorname{Var}(X)=\sigma^{2}=E\left(X^{2}\right)-\mu^{2} \\
& E\left(X^{2}\right)=\int_{0}^{2} x^{2}(0.5 x) d x=\int_{0}^{2} 0.5 x^{3} d x=\left[\frac{x^{4}}{8}\right]_{0}^{2}=\frac{16}{8}-0=2 \\
& E(X)=\mu=\int_{0}^{2} x(0.5 x) d x=\int_{0}^{2} 0.5 x^{2} d x=\left[\frac{x^{3}}{6}\right]_{0}^{2}=\frac{8}{6}-0=\frac{4}{3} \\
& \therefore \operatorname{Var}(X)=\sigma^{2}=E\left(X^{2}\right)-\mu^{2}=2-\left(\frac{4}{3}\right)^{2}=\frac{2}{9} \\
& \operatorname{sd}(X)=\sqrt{\frac{2}{9}}=\frac{\sqrt{2}}{3}
\end{aligned}
$$

Range

The range of a random variable is the difference between the smallest and largest value (of X). i.e calculate from the domain of the probability density function.

IQR

The Interquartile Range is the range of the middle 50% of the distribution. It is the difference between the $75^{\text {th }}$ percentile and the $25^{\text {th }}$ percentile.

Example: Find the IQR of the random variable X which has the probability density function:

$$
f(x)= \begin{cases}2 x & 0 \leq x \leq 1 \\ 0 & x<0 \text { or } x>1\end{cases}
$$

Solution:

$$
\int_{0}^{a} 2 x d x=0.25
$$

$25^{\text {th }}$ percentile: $\left[x^{2}\right]_{0}^{a}=0.25$

$$
\begin{array}{ll}
a^{2}=0.25 \\
a= \pm 0.5 & a=0.5
\end{array}
$$

$$
\text { 75 }{ }^{\text {th }} \text { percentile: } \left\lvert\, \begin{aligned}
& \int_{0}^{a} 2 x d x=0.75 \\
& {\left[x^{2}\right]_{0}^{a}=0.75} \\
& a^{2}=0.75 \\
& a= \pm \sqrt{0.75} \quad a=\frac{\sqrt{3}}{2}
\end{aligned}\right.
$$

$\mathrm{IQR}=\frac{\sqrt{3}}{2}-\frac{1}{2}=\frac{\sqrt{3}-1}{2} \approx 0.366$

- $\mathbf{E x 1 5 C} 1,2,3,5,6,9,11$

The Normal Distribution

Normal distributions are described by symmetric, bell-shaped curves. Area under the curve shows what decimal fraction of the observations lie in any region. The total area enclosed by the graph is equal to 1 .

Standardised Normal Distribution

Example: There are two national (USA) college entrance exams, the Scholastic Aptitude Test (SAT) and the American College Testing program (ACT). Scores on the SAT's are approximately normal with a mean of 500 and a standard deviation of 100 . Scores on the ACT are approximately normal with mean of 18 and a standard deviation of 6 . Use this information to answer the following: Julie scores 630 on the mathematics part of the SAT. John takes the ACT mathematics test and scores 22. Assuming both tests measure the same kind of ability, who has the better result?

Solution:

Julie: Score is 1.3 standard deviations above the mean: $\frac{630-500}{100}=\frac{130}{100}=1.3$
John: Score is 0.67 standard deviations above the mean: $\frac{22-18}{6}=\frac{4}{6}=0.67$

Therefore Julie had the better result!

So to standardise a normal result:

$$
Z=\frac{x-\mu}{\sigma} \quad \text { where } Z \text { is the standardised normal value. }
$$

Notation: The random variable X has a normal distribution with mean μ and variance σ^{2} is written as: $X \sim N\left(\mu, \sigma^{2}\right)$.
In the above example for SAT : $X \sim N(500,10000)$
Whereas the Standard normal variable, Z, has a mean of 0 and a standard deviation of 1 .
$Z \sim N(0,1)$

The Normal Probability Function is:

$$
f(z)=\frac{1}{\sqrt{2 \pi}} e^{\left(\frac{-1}{2}(z)^{2}\right)} \quad \text { or } \quad f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\left(\frac{-1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right)}
$$

Both of these curves have the same degree of spread (i.e. standard deviation), but have different means. . $\mu_{l}<\mu_{2}$, but $\sigma_{l}=\sigma_{2}$

- Ex16A 1, 2, 3, 4, 6, 8, 9

Standardised Values (Z values)

Example: Sketch the Normal Curve and shade the area for the following:
(a) (i) $\operatorname{Pr}(Z \leq 2.5)$
(ii) $\operatorname{Pr}(Z<0)$
(iii) $\operatorname{Pr}(Z \leq 1.234)$

Solution:

(i)

$\operatorname{Pr}(Z \leq 2.5)=0.9938$
(ii)

(iii)

$\operatorname{Pr}(Z \leq 0)=0.5$
$\operatorname{Pr}(Z \leq 1.234)=0.8914$

(b) (*Tech Free)

Given $\operatorname{Pr}(Z>0.78)=0.2177$ and $\operatorname{Pr}(Z \leq 1.234)=0.8914$ find
(i) $\operatorname{Pr}(Z \leq-0.78)=\operatorname{Pr}(Z \leq-0.78)=\operatorname{Pr}(Z>0.78)=1-\operatorname{Pr}(Z<0.78)=1-0.7823=0.2177$
(ii) $\operatorname{Pr}(-0.78 \leq Z \leq 1.234)=\operatorname{Pr}(Z \leq 1.234)-\operatorname{Pr}(Z \leq-0.78)=0.8914-0.2177=0.6737$

68-95-99.7 \% rule

68\%: $\mu-\sigma<X<\mu+\sigma$

95\%: $\mu-2 \sigma<X<\mu+2 \sigma$

Ti-nSpire:

Menu - Probability - Distributions Normal Cdf
99.7\%: $\mu-3 \sigma<X<\mu+3 \sigma$

Example: The distribution of heights of young women is approximately normal with mean, $\mu=166$ cm and standard deviation, $\sigma=6$.
(a) Using the curve below, mark its mean and standard deviations.
(b) Between what two values do the heights of the central 95% of young women lie? Shade this area on the curve.
(b) 154-178

- Ex16B 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

Inverse Problems

Example: Find by first drawing a diagram.
(a) $\operatorname{Pr}(Z<k)=0.8$
(b) $\operatorname{Pr}(Z<k)=0.6$
(c) $\operatorname{Pr}(Z<k)=0.95$
(d) $\operatorname{Pr}(Z<k)=0.3$
(e) $\operatorname{Pr}(Z>k)=0.15$
(f) $\operatorname{Pr}(Z>k)=0.65$

Solution:

(a)

(b)

(c)

(d)

(e)

(f)

- Ex16C 1 adeh, 2 abfh, 4, 5, 6, 7, 8, 9, 10, 11

Normal \& Inverse Applications

Example

A manufacturer of electric light globes finds that his articles have an average life of 1200 burning hours with a standard deviation of 200 hours. Assuming that the distribution of life-times is normal, (i) what is the probability of a globe selected at random having a life between 1240 and 1320 hours?
(ii) out of a batch of 200 globes, how many would be expected to fail in the first 880 burning hours?
(iii) what proportion of globes manufactured would be expected to have a life less that 1100 hours or more than 1460 hours?

Solution:

Let $X=$ the number of burning hours
(a) $\operatorname{Pr}(X<1240)=\operatorname{Pr}\left(Z<\frac{1240-1200}{200}\right)=\operatorname{Pr}(Z<0.2)=0.5793$
$\operatorname{Pr}(X<1320)=\operatorname{Pr}\left(Z<\frac{1320-1200}{200}\right)=\operatorname{Pr}(Z<0.6)=0.7257$
$\operatorname{Pr}(1240<X<1320)=0.7257-0.5793=0.1464$

(b) $\operatorname{Pr}(X<880)=\operatorname{Pr}(Z<-1.6)=\operatorname{Pr}(Z>1.6)=1-\operatorname{Pr}(Z<1.6)=1-0.9452=0.0548$

Expected number $=200 \times 0.0548=11$
(c) $\operatorname{Pr}(X<1100)=\operatorname{Pr}\left(Z<\frac{1120-1200}{200}\right)$
$=\operatorname{Pr}(Z<-0.5)=0.3085$
$\operatorname{Pr}(X>1460)=\operatorname{Pr}\left(Z>\frac{1460-1200}{200}\right)=\operatorname{Pr}(Z>1.3)$
$=1-\operatorname{Pr}(Z<1.3)=1-0.9032=0.0968$

$\operatorname{Pr}(X<1100$ or $X>1460)=0.3085+0.0968=$ 0.4053 (40.53 \%)

- Ex16C 12, 13, 17 abc, 18 ab; Ex16D 1a, 2a, 3a , 4

Example

A lathe turns out brass cylinders with a mean diameter of 2.16 cm and a standard deviation of 0.08 cm . Assuming that the distribution of diameters is normal, find the limits to the acceptable diameters if, on checking, it is found that 5 per cent in the long run rejected because they are oversize and 5 per cent are rejected because they are undersize.

Solution

- Ex16C 14, 15, 17 def, 18cde; Ex16D 1b, 2 bc, 3 b, 5, 6

Example: The lengths of newborn girls are normally distributed with a mean of 49.50 cm and a variance of 3.24 cm .
(i) Girls A's length at birth was 53.3 cm . What percentile is she in for height (length)?
(ii) Her sister, Girl B, was in the $97^{\text {th }}$ percentile for length. How long was she at birth?
(iii) Girl C was in the $25^{\text {th }}$ percentile for length at birth. How long was she?

Solution:

(i) Let $X=$ birth length in cm .

$\operatorname{Pr}(X<53.3)$

$z=\frac{x-\mu}{\sigma} \quad \mu=49.5 \quad \sigma=\sqrt{3.24}=1.8$
$z=\frac{53.3-49.5}{1.8}=2.111$
$\operatorname{Pr}(Z<2.111)=0.9826$

Therefore the girl is in the $98^{\text {th }}$ percentile. This means 98% of all girls are shorter than girl A.

(ii) | $\operatorname{Pr}(X<?)=0.97$ |
| :--- |
| $\therefore \operatorname{Pr}(Z<1.881)=0.97$ |
| $1.881=\frac{x-49.5}{1.8}$ |
| $1.881(1.8)+49.5=x$ |
| $x=52.9 \mathrm{~cm}$ |

49.5

$$
\text { (iii) } \begin{aligned}
& \operatorname{Pr}(X<? ?)=0.25 \\
& \operatorname{Pr}(Z<-0.674)=0.25 \\
& \therefore-0.674=\frac{x-49.5}{1.8} \\
& -0.674(1.8)+49.5=x \\
& x=48.3 \mathrm{~cm}
\end{aligned}
$$

Example: Limits of acceptability imposed on the lengths of a certain batch of metal rods are 1.925 cm and 2.075 cm . It is observed that, on average, 5% are rejected as undersized and 5% are rejected as oversized.
Assuming that the lengths are normally distributed, find the mean and standard deviation of the distribution.

Solution:

Let $X=$ the length of the metal rods (cm)
$X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$

$\operatorname{Pr}(X>2.075)=0.05 \quad \therefore \operatorname{Pr}(Z>1.6448)=0.05$
$\operatorname{Pr}(X<1.925)=0.05 \quad \therefore \operatorname{Pr}(Z<-1.6448)=0.05$
$\therefore 1.6448=\frac{2.075-\mu}{\sigma} \quad \&-1.6448=\frac{1.925-\mu}{\sigma}$
Solve simultaneously
$\mu=2 \mathrm{~cm}$ \& $\sigma=0.0456 \mathrm{~cm}$

- Ex16D 7, 10, 11; Ch16 Review TF 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ER 7, 8, 9, 10

The Normal Approximation to the Binomial Distribution

- We know the shape of the binomial distribution depends on n and p.
- If n is large and p is not too close to 0 or 1 then the distribution is close to symmetrical and starts to look like a Normal distribution
- When to use the normal approximation?
- If n is sufficiently large ($\sim 25^{*}$ or more) *depends on p also
- P is not too close to 0 or 1
\circ General rule: $n \boldsymbol{p}$ and $n(1-p)$ is greater than 5
- If satisfied, then the Binomial random variable, X, will be approximately normally distributed with:
- a mean of $\mu=n p$;
- a standard deviation of $\sigma=\sqrt{n p(1-p)}$

Example: A sample of 1000 people from a certain city were asked to indicate whether or not they were in favour of the construction of a new freeway. It is known that 30% of people in this city are in favour of the new freeway. Find the approximate probability that between 270 and 330 people in the sample were in favour of the new freeway.

Solution:

Let $X=$ the number of people in the sample who are in favour of the freeway.
$X \sim \operatorname{Bi}(n, p) \quad n=1000 \& p=0.3$
$\mu=n \times p=1000 \times 0.3=300$
$\sigma=\sqrt{n p(1-p)}=\sqrt{1000 \times 0.7 \times 0.3}=\sqrt{210}$
$\operatorname{Pr}(270<X<330) \approx \operatorname{Pr}\left(\frac{270-300}{\sqrt{210}}<Z<\frac{330-300}{\sqrt{210}}\right) \approx \operatorname{Pr}(-2.070<Z<2.070) \approx 0.9616$
Note: if we used the Binomial distribution to calculate this we obtain:
$\operatorname{Pr}(270<X<330)=0.9583$ and $\quad \operatorname{Pr}(270 \leq X \leq 330)=0.9648$

- Ex16E 1, 2, 3, 4, 5, 6

Sampling \& Estimation

Populations \& Samples

- A population is the set of all eligible members of a group which we intend to study.
- A sample is a subset of the population.
- A sample is used to make inferences about the population.
- We use sampling when:
- The population is too large - e.g. all AFL supporters in Australia.
- The population may be hard to access - e.g. all Blue Whales in the Pacific Ocean.
- The data collection process may be destructive - e.g. testing every battery to see how long it lasts, mean that there would be no batteries left to sell.

Random Sample

- When we select our sample, we don't want it to be biased towards a sub-group. For example, surveying people as they enter the MCG and asking "do enjoy Australian Rules football.
- A sample size then has to be selected in a way that every subset of the population has an equal chance of being selected.
- We call this the Simple Random Sample.
- Many methods can be used. A common method is to assign every member of the population a number and then use a random number generator to select the sample.

Example

A researcher wishes to evaluate how well the local library is catering to the needs of a town's residents. To do this she hands out a questionnaire to each person entering the library over the course of a week. Will this method result in a random sample?

Probably not, since the members of the sample are already users of the Library. Would be better sampling from the whole of the town's population.

Random Number Generator on the Ti-NSpire

- Menu - Probability - Random - Seed then enter 4 random numbers, e.g. the last 4 numbers of your phone number. (e.g. RandSeed 8595)
- To get a random number between 0 and 1 use Menu Probability - Random - Number. (e.g. rand())
- For a random integer - Menu - Probability - Random Integer .
- To get 5 random integers between 1 and 30: randInt(1,30,5)

Example: Use a random number generator to select 6 students from the following class:

John	Mary	Bill	Jane	Fred	Lily
Shay	Rose	Lucy	Declan	Patrick	Louis
Harry	Ruby	Georgia	Tom	Darren	Alice
Kristin	Lee-Anne	Glen	Tim	Steve	Lachlan

Solution:

First assign numbers to each person in the class

John (1)	Mary (2)	Bill (3)	Jane (4)	Fred (5)	Lily (6)
Shay (7)	Rose (8)	Lucy (9)	Declan (10)	Patrick (11)	Louis (12)
Harry (13)	Ruby (14)	Georgia (15)	Tom (16)	Darren (17)	Alice (18)
Kristin (19)	Lee-Anne (20)	Glen (21)	Tim (22)	Steve (23)	Lachlan (24)

Then generate 6 random integers without repeats from 1 to 24 .
e.g. $4,15,9,7,22,13$
which gives: Jane, Georgia, Lucy, Shay, Tim \& Harry

The sample proportion as a random variable

- Population proportion $p=\frac{\text { number in population with attribute }}{\text { population size }}$
- In the above example there are 11 females and 13 males. So the proportion of female students in the class is $p=\frac{11}{24}$
- The Sample Proportion, $\hat{p}, \hat{p}=\frac{\text { number in sample with attribute }}{\text { sample size }} \hat{p}=\frac{x}{n}$
- The proportion of females in our sample of 6 is $\hat{p}=\frac{3}{6}=\frac{1}{2}$
- The population proportion, p, is a population parameter; its value is constant.
- The sample proportion, \hat{p}, is a sample statistic; its value is not constant.

Example: Use the same data from the previous example, select another random group of six. Determine the proportion of females in the sample.

Solution:

e.g. Chosen 6 are: 5, 6, 11, 19, 24, 10: Fred, Lily, Patrick, Kristin, Lachlan, Declan

$$
\hat{p}=\frac{2}{6}=\frac{1}{3}
$$

- Ex17A 1, 2, 3, 5, 6, 8, 12, 13, 14

The exact distribution of the sample proportion

Sampling from a small population

Example: A bag contains six blue and four red balls. If we take a random sample of size 4, what is the probability that there is one blue ball in the sample ($\hat{p}=\frac{1}{4}$) ?

Solution:

Method 1:
This can be done in 4 different ways: RRRB or RRBR or RBRR or BRRR
$\operatorname{Pr}(R R R B, R R B R, R B R R, B R R R)=$
$\left(\frac{4}{10} \times \frac{3}{9} \times \frac{2}{8} \times \frac{6}{7}\right)+\left(\frac{4}{10} \times \frac{3}{9} \times \frac{6}{8} \times \frac{2}{7}\right)+\left(\frac{4}{10} \times \frac{6}{9} \times \frac{3}{8} \times \frac{2}{7}\right)+\left(\frac{6}{10} \times \frac{4}{9} \times \frac{3}{8} \times \frac{2}{7}\right)$
$=4 \times \frac{2}{70}=\frac{8}{70}=\frac{4}{35}$

Method 2:

There are $\binom{10}{4}=210$ ways to select 4 balls from 10 balls.
There are $\binom{4}{3}=4$ ways to select 3 red balls from 4 red balls and there are $\binom{6}{1}=6$ ways to select 1 blue ball from 4 blue balls.

Therefore the probability of obtaining 3 reds and 1 blue is $\frac{\binom{4}{3} \times\binom{ 6}{1}}{\binom{10}{4}}=\frac{4 \times 6}{210}=\frac{24}{210}=\frac{4}{35}$
The following is an extension of the previous example. This table gives the probability of obtaining each possible sample proportion \hat{p} when selecting a sample size of 4 .

Number of blue balls in the sample (x)	0	1	2	3	4
Proportion of blue balls in the sample, \hat{p}	0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{3}{4}$	1
Probability	$\frac{1}{210}$	$\frac{24}{210}$	$\frac{90}{210}$	$\frac{80}{210}$	$\frac{15}{210}$

The last 2 rows form a probability distribution for the random variable, \hat{p}.
The distribution of a statistic which is calculated from a sample is called a sampling distribution.

Example: A bag contains six blue balls and four red balls. Use the sampling distribution in the previous table to determine the probability that the proportion of blue balls in a sample of size 4 is more than $\frac{1}{4}$.
Solution:

$$
\begin{aligned}
\operatorname{Pr}\left(\hat{P}>\frac{1}{4}\right) & =\operatorname{Pr}\left(\hat{P}>\frac{1}{2}\right)+\operatorname{Pr}\left(\hat{P}>\frac{3}{4}\right)+\operatorname{Pr}(\hat{P}>1) \\
& =\frac{90}{210}+\frac{80}{210}+\frac{15}{210}=\frac{185}{210}=\frac{37}{42}
\end{aligned}
$$

Sampling from a large population

This is the most common case.
For example, suppose 70% of all 17 year olds in Australia attend school. i.e. $p=0.7$
Now consider selecting a random sample of size 4 from the population of all 17 year olds in Australia. As this binomial then:

$$
\operatorname{Pr}(X=x)=\binom{4}{x} 0.7^{x} 0.3^{4-x} \quad x=0,1,2,3,4
$$

The sampling distribution will look like this:

Number at school in the sample (x)	0	1	2	3	4
Proportion at school in the sample, \hat{p}	0	0.25	0.5	0.75	1
Probability $\operatorname{Pr}(\hat{P}=\hat{p})$	0.0081	0.0756	0.2646	0.4116	0.2401

The population that the sample of size $=4$ is being taken from is such that each item selected has a probability of $p=0.7$ of success.
 0.7 and $n=4$. So the above table could be written as:

x	0	1	2	3	4
\hat{p}	0	0.25	0.5	0.75	1
$\operatorname{Pr}(\hat{P}=\hat{p})=\operatorname{Pr}(X=x)$	0.0081	0.0756	0.2646	0.4116	0.2401

For example the probability, in the random sample of 4, the proportion attending school less than 50% is:

$$
\begin{aligned}
\operatorname{Pr}(\hat{P}<0.5) & =\operatorname{Pr}(\hat{P}=0)+\operatorname{Pr}(\hat{P}=0.25) \\
& =0.0801+0.0756 \\
& =0.0837
\end{aligned}
$$

The Mean and Standard Deviation of the sample proportion

Example: Use the following distribution to determine the mean and standard deviation of the sample proportion \hat{P} from the previous example of 17 year olds.

x	0	1	2	3	4
\hat{p}	0	0.25	0.5	0.75	1
$\operatorname{Pr}(\hat{P}=\hat{p})=\operatorname{Pr}(X=x)$	0.0081	0.0756	0.2646	0.4116	0.2401

Solution:

$$
\begin{aligned}
E(\hat{P}) & =\sum \hat{p} \times \operatorname{Pr}(\hat{P}=\hat{p}) \\
& =0 \times 0.0081+0.25 \times 0.0756+0.50 \times 0.2646+0.75 \times 0.4116+1 \times 0.2401 \\
& =0.7 \\
s d(\hat{P}) & =\sqrt{E\left(\hat{P}^{2}\right)-\left[(E(\hat{P})]^{2}\right.} \\
E\left(\hat{P}^{2}\right) & =\sum \hat{p}^{2} \times \operatorname{Pr}(\hat{P}=\hat{p}) \\
& =0^{2} \times 0.0081+0.25^{2} \times 0.0756+0.50^{2} \times 0.2646+0.75^{2} \times 0.4116+1^{2} \times 0.2401 \\
& =0.5425 \\
s d(\hat{P}) & =\sqrt{0.5425-0.7^{2}}=0.2291
\end{aligned}
$$

If we are selecting a random sample of size n from a large population, then the mean and standard deviation of the sample proportion \hat{P} are given by:

$$
E(\hat{P})=p \quad \text { and } \quad s d(\hat{P})=\sqrt{\frac{p(1-p)}{n}}
$$

Note: the standard deviation of a sample statistic is called the standard error.
From our 17 year olds example, we can see that these are the same as calculated in the previous example:

$$
\begin{aligned}
& p=0.7 \\
& s d(\hat{P})=\sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{0.7 \times 0.3}{4}}=0.2291
\end{aligned}
$$

Example: Suppose that 70% of 17 year olds in Australia attend school. If a random sample of size 20 is chosen from this population, find the probability that the sample proportion:
a is equal to the population proportion (0.7);
b lies within one standard deviation of the population proportion;
c lies within two standard deviations of the population proportion.

Solution:

a

If the sample proportion is $\hat{p}=0.7$ and the sample size is 20 , then the number of students in the sample is $0.7 \times 20=14$.

$$
\operatorname{Pr}(\hat{P}=0.7)=\operatorname{Pr}(X=14)=\binom{20}{14} \times 0.7^{14} \times 0.3^{6}=0.1916
$$

b

$$
s d(\hat{P})=\sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{0.7 \times 0.3}{20}}=0.1025
$$

1 s.d. from the mean: $0.7-0.1025=0.5975$ and $0.7+0.1025=0.8025$
$0.5975 \times 20=11.95 \quad \& \quad 0.8025 \times 20=16.05$
$\operatorname{Pr}(0.5975 \leq \hat{P} \leq 0.8025)=\operatorname{Pr}(11.95 \leq X \leq 16.05)=\operatorname{Pr}(12 \leq X \leq 16)=0.7796$

$$
\begin{aligned}
& \text { c } \\
& \begin{array}{l}
2 \text { s.d. from the mean: } 0.7-2 \times 0.1025=0.495 \text { and } 0.7+2 \times 0.1025=0.905 \\
\operatorname{Pr}(0.495 \leq \hat{P} \leq 0.905)=\operatorname{Pr}(9.9 \leq X \leq 18.1)=\operatorname{Pr}(10 \leq X \leq 18)=0.9752
\end{array}
\end{aligned}
$$

- Ex17B 1, 2, 4, 5, 8, 11, 12,14

Approximating the distribution of the sample proportion

If the sample size, n, is large it is impractical to work out probabilities associated with the sample proportion.
We overcome this by approximating the distribution of the sample proportion.
As we have already seen a binomial distribution is well approximated by the normal distribution (remember $\boldsymbol{n p}$ and $\boldsymbol{n p}(\boldsymbol{1}-\boldsymbol{p})$ should be greater than 10).

$$
\circ \mu=p \quad \sigma=\sqrt{\frac{p(1-p)}{n}}
$$

Example: Assume 55\% of people in Australia have blue eyes. Use your calculator to illustrate a possible distribution of sample proportions, \hat{p}, that may be obtained when 200 different samples (each of size 100) are selected from the population.

Solution:

Using the TI-Nspire

- To generate the sample proportions:
- Start from a Lists \& Spreadsheet page.
* Name the list 'propblue' in Column A.
- In the formula cell of Column A, enter the formula using (Menu) $>$ Data $>$ Random > Binomial and complete as: $=\operatorname{randbin}(100,0.55,200) / 100$

prophlar $-\frac{\text { mattin }(200,0,55,200)}{100} \quad 4$?

Note: The syntax is: randbin(sample size, population proportion, number of samples) To calculate as a proportion, divide by the sample size.

- To display the distribution of sample proportions:
- Insert a Data \& Statistics page ((ctr)(1) or (ctr) (docv).
- Click on 'Click to add variable' on the x-axis and select 'propblue'. A dotplot is displayed.
Note: You can recalculate the random

sample proportions by using (ctr) (R) while in the Lists \& Spreadsheet page.
- To fit a normal curve to the distribution:
- Menu $>$ Plot Type $>$ Histogram
- Meni) > Analyze > Show Normal PDF

Note: The calculated Normal PDF, based on the data set, is superimposed on the plot, showing the mean and standard deviation of the sample proportion.

Example: Assume 60% of people have driver's licence. Using the normal approximation, find the approximate probability that, in a randomly selected sample size 200 , more than 65% of people have a driver's licence.

Solution:

$n=200 \& p=0.6$ and since n is large the distribution of \hat{P} is approximately normal,

$$
\sigma=\sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{0.6 \times 0.4}{200}}=0.0346
$$

so $\mu=p=0.6$

$$
\operatorname{Pr}(\hat{P}>0.65)=0.0745
$$

- $\mathbf{E x 1 7 C} 1,2,4,5,7,9,10$

Confidence intervals for the population proportion

Point estimates

The value of the sample proportion \hat{p} can be used to estimate the population proportion p. since this is a single-valued estimate, it is called the point estimate of p.

Interval estimates

An interval estimate for the population proportion p is called a confidence interval for p.
Using the Normal approximation and standardising, remember $Z=\frac{x-\mu}{\sigma}$.
We know that $\operatorname{Pr}(-1.96<\mathrm{Z}<1.96)=0.95$, so
$\operatorname{Pr}\left(-1.96<\frac{\hat{P}-p}{\sqrt{\frac{p(1-p)}{n}}}<1.96\right) \approx 0.95$ which can be written as
$\operatorname{Pr}\left(-1.96 \sqrt{\frac{p(1-p)}{n}}<\hat{P}-p<1.96 \sqrt{\frac{p(1-p)}{n}}\right) \approx 0.95$ then
$\operatorname{Pr}\left(\hat{P}-1.96 \sqrt{\frac{p(1-p)}{n}}<p<\hat{P}+1.96 \sqrt{\frac{p(1-p)}{n}}\right) \approx 0.95$
This is the $\mathbf{9 5 \%}$ confidence interval for p.

- p is the population proportion;
- \hat{p} is the value of the sample proportion;
- n is the size of the sample from which \hat{p} was calculated.

Example: Find an approximation 95% confidence interval for the proportion p of primary school children in Australia who regularly use social media, if we select a random sample of 20 children and find the sample population \hat{p} to be 0.7 .

Solution:

$\hat{p}=0.7$ and $n=20$
$\sigma=\sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{0.7 \times 0.3}{20}}=0.1025$
so 95% :
$(0.7-1.96 \times 0.1025,0.7+1.96 \times 0.1025)=(0.499,0.901)$
So based on a sample size of 20 there is a 95% confidence interval for the population proportion p is (0.499, 0.901).

Using a calculator to determine confidence intervals

Using the Tl-Nspire

In a Calculator page:

- Use (Menu) > Statistics > Confidence Intervals > 1-Prop z Interval.
- Enter the values $x=237$ and $n=500$
as shown.

- - The 'CLower' and 'CUpper' values give the 95% confidence interval $(0.43,0.52)$.

Note: 'ME' stands for margin of error, which is covered in the next subsection.

Precision and margin of error

In the example with the school children, we found the 95% confidence interval $(0.499,0.901)$ for the proportion p of primary school children who use social media, based on a sample size of 20.
This means we are predicting the population proportion is somewhere in the range of approximately 50% to 90%. Not a good prediction.

If we change the random sample size to 200 :
$P=0.7, n=200 \quad \Rightarrow \quad \sigma=\sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{0.7 \times 0.3}{200}}=0.0324$
So the confidence interval is calculated as:
$\left(0.7-1.96 \sqrt{\frac{0.7 \times 0.3}{200}}, \quad 0.7+1.96 \sqrt{\frac{0.7 \times 0.3}{200}}\right)=(0.636,0.764)$
So based on a sample size of 200 and a sample estimate of 0.7 , an approximate 95% confidence interval for the population proportion p is $(0.636,0.764)$ i.e. between 64% and 76%.

The difference between the sample estimate and the confidence interval endpoints is called the Margin of Error, M. For a 95% confidence interval it is given as:

$$
M=1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

Example: Determine the sample size required to achieve a margin of error of 2% in an approximate 95% confidence interval for the proportion p of primary school children in Australia who use social media, if the sample proportion \hat{p} is found to be 0.7 .
Solution:

$$
\begin{aligned}
M & =0.02 \& \hat{p}=0.7 \quad M=1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \\
0.02 & =1.96 \sqrt{\frac{0.7 \times 0.3}{n}} \\
\left(\frac{0.02}{1.96}\right)^{2} & =\frac{0.7 \times 0.3}{n} \Rightarrow n=\frac{0.7 \times 0.3}{\left(\frac{0.02}{1.96}\right)^{2}}=2016.84
\end{aligned}
$$

So to achieve a margin of error of 2%, we need a sample size of 2017 .
A 95% confidence interval for a population proportion p will have margin of error approximately equal to a specified value of M when the sample size is:
$n=\left(\frac{1.96}{M}\right)^{2} p^{*}\left(1-p^{*}\right) \quad p^{*}$ is an estimated value for the population proportion p.
In general, a $\mathrm{C} \%$ confidence interval is given by:
$\left(\hat{p}-\mathrm{k} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+\mathrm{k} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$ where k is such that: $\operatorname{Pr}(-k<Z<k)=\frac{C}{100}$
e.g. a 99% confidence will be $\sqrt{\left(\hat{p}-2.58 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+2.58 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)}$
because $\operatorname{Pr}(-2.58<Z<2.58) \approx 0.99$
Example: Calculate the $90 \%, 95 \%$ and 99% confidence interval for the primary school children in Australia who use social media, with a random sample size of 200 and \hat{p} of 0.7.

Solution:

$$
\begin{aligned}
& 95 \%:(0.636,0.764) \\
& 90 \%:\left(0.7-1.65 \sqrt{\frac{0.7 \times 0.3}{200}}, 0.7+1.65 \sqrt{\frac{0.7 \times 0.3}{200}}\right)=(0.647,0.753) \\
& 99 \%:\left(0.7-2.58 \sqrt{\frac{0.7 \times 0.3}{200}}, 0.7+2.58 \sqrt{\frac{0.7 \times 0.3}{200}}\right)=(0.616,0.783)
\end{aligned}
$$

So obviously the greater the confidence then wider the interval is required.

- Ex17D 1, 2, 3, 4, 6, 7, 9, 11, 12

Past Exam Questions
2008 Exam 1
2008 Exam 2
Question 11
The grobubliny density fucction fir the commoms randoen vanable X is given by

$$
f(x)= \begin{cases}|1-x| & \text { if } 0 \leqslant z \leqslant ? \\ 0 & \text { elvewhere }\end{cases}
$$

The probatality that $X<1.5$ is equal to
A. 0.125
a. 0.375
C. 05
D. 0.625

E 075

Question 1

2009 Exam 1

2009 Exam 2

2010 Exam 1

 wuth her stantint nochual dia rizution

- Fint mat > M
\qquad

\qquad ask:

2010 Exam 2

Question 11
The continums randam varuble \bar{x} has a pmotatility denaty fimetion govn by

$$
f(x)-\left\{\begin{aligned}
\cos (2 x) & \text { if } \frac{3 \pi}{4}<x<\frac{5 \pi}{4} \\
0 & \text { niwerwher }
\end{aligned}\right.
$$

Ther value of a vech than $P r(X<a)=0.25$ ns clonest to
A. 2.25
A. 275
$\mathrm{C}^{2} \quad 278$
$\begin{array}{ll}\text { C } & 275 \\ \text { D. } & 3.06\end{array}$
2. 3 41

Quesition 13
 contansus ranfom ymble Z has the standand nocull distribution
The probalality frat Z is between -2 and 1 is equal to
A. $\operatorname{Pr}(18<x<21)$
B. $\operatorname{Pr}(14<x<32)$
C. $\operatorname{Pr}(14<x<26)$
D. $\operatorname{Pr}(8<\pi<32)$
E. $\operatorname{Pr}(X>14)+\operatorname{Pr}(X<26)$

2011 Exam 1

2011 Exam 2

$$
f(x)=\left\{\begin{array}{cl}
\text { boge, }(x) & \text { isise } \\
0 & \text { dwentere }
\end{array}\right.
$$

the expected valie of $X, E, 20$, in elosest to
A. 035 a
a. 0.5
$\begin{array}{ll}\text { C } & 1 \\ \text { D } & 1099\end{array}$
$\begin{array}{ll}\text { E. } & 2007 \\ \text { E. }\end{array}$

2012 Exam 1

	Qarstion 12
	rember $a, \operatorname{Pr}(X>g)=0.20$
	Conect to two decimme places, a is equal to
	A. 23.59
	B. 24.00
	C. 250
	D. 34.21
	E. 3641

Questina 13

La in orchand of 2000 apple trees it 5 found that 1735 trees have s height greate ten 28 netres. The heights are distribsed numully wifh a meza μ and standard donutivn 02 metres

The glue of p is closest to

A. 3003
B. 2577
C. 2.230
D. 1.115
E. 0.223

2012 Exam 2

```
Question Il
The weights of bags of fiver are nemully distributed with menn 252 g and standurd devation 12 g The
```



```
The muximum posible vabe of \(x\) is closent to
A. 249.0
B. 2515
C. 2535
D. 254.5
E. 255.0
```


2013 Exam 1

Orent
$\bar{\square}$
$\bar{\square}$

2013 Exam 2

Question 22

with a ment of 120 dsys mif a stmideri devistion of σ days
 value of σ is chosest to
A. Tams

等. 13 dys
c. 17 dys
D. 21 dov

年 37 dms
 $\pi \cdot \pi=1$

$$
N(x)-\left\lvert\, \begin{array}{ll}
\frac{c+30^{4}+6 t}{250} & t \leq \varepsilon=s \\
\frac{\pi+30}{129} & t-c=A \\
0 & \text { etentorer }
\end{array}\right.
$$

ii. Is a nendom sasople of 200 FuilyFit menken, how many nombers woold be espected to take anove thum forr mumtes to complete S? Give your answer to the nearest mitegr

2014 Exam 1

b. The value of mis a manber greater than 1.

Find $\mathrm{r}(x<1 \mid x \leq m)$
2 moses

2014 Exam 2

Question 5

The rondom vaiable X has a enormal fostribution with man 12 and staderd devation 05
If Z hes the standard nomal distroubon then the probability fhat X is less than 11.5 is equal to
A. $\operatorname{Pr}(Z>-1)$
B. $\operatorname{Pr}(Z<-0.5)$
C. $\operatorname{Pr}(Z>1)$
D. $\operatorname{Pr}(Z \geq 0.5)$
E. $\operatorname{Pr}(Z<1)$

Question 16

The valoe of $\int_{-}^{2} x^{2} p(x) d x$ is
A. 1
B. 7
C. 9
D. 21
E. 29

Quenten 4(14 mabis)

 plath
 moin of 14 cm mid s standiel devinico of 4 cm . Thare are 2000 bsid planty in the uivery.

What is fir mmimmen lieight of a upes teil plat, corect to the nesed millinitbet

 mimbe?
 where

$$
h(x)=\left[\begin{array}{cc}
\frac{\pi}{100} \sin \left(\frac{\pi y}{90}\right) & 0<x<99 \\
0 & 0 \text { ofterwias }
\end{array}\right.
$$

c. stan Bermen beiblit of the oonnaler piasis

Putrica
platit fioced
 niven dir sew fype of Jinal food
\qquad
\qquad
 20 pier cont of har thatap plank an tall.
A custoner, Jeck, velech ctromatr Thents at monsm

Find the minume value of n se ther g zs prover than 0.gs
\qquad
\qquad
 rauili.
The craftuman firmbes each pot before startug on the nexu. Over a penod of mus, it is found that it obe plant pot is simpoth. the probeldity that the iext coe is suboth is 07 , utule if ore plat pot is
 a week at a tume, bur can vary from week 20 week The fint pot male each wedk is always a imoont poe.
f. L. Find in teman of p, the protondity that the thind pot unde in a given week is umoth 2 mark
\qquad
\qquad
\qquad
 Calnalite the value of p is this wetk.
\qquad
\qquad

2015 Exam 1
Queshan 6 (3 maris)
 Let Z be the standard monmal nodom variblie, urch flat $Z-M 0,1)$
a. Find s sach that $\operatorname{Pr}(X>3.1)=P r(Z<B) \quad 1$ mark
\qquad
\qquad
b. Usump fe fact that, conect to two decinal place. $\operatorname{Pr}(Z<-1)=0.16$. find $\operatorname{Pr}(x<211 x>2.5)$ Write the mswer conect to two decimul places

2 marks
\qquad
\qquad
\qquad
\qquad
\qquad

2015 Exam 2

gonkey

A.
$\begin{array}{ll}\text { I. } & \\ \text { C. } & +\end{array}$
$\begin{array}{ll}8 & 1 \\ 8 & 1\end{array}$
E. 1

Quntea? 01 mant

 traternan 7 cm . Lnabl
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad

