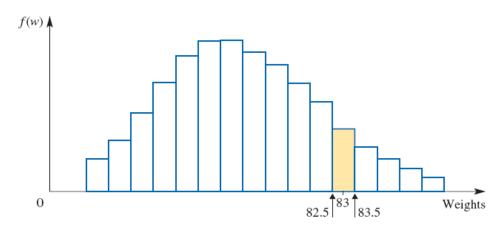

Continuous Probability

Continuous Random Variables and their Probability Distributions

Continuous Random Variables

- A continuous random variable (CRV) is one that can take any value in an interval on the real number line.
- No limit on the accuracy, for example if someone's weight (kg) is given as 83, implies the weight is between 82.5 and 83.5, if the weight is given as 83.3, it implies the weight is between 83.25 and 83.35, etc..
- Therefore Pr(W = w) = 0
- from text:

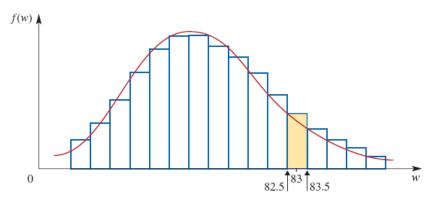

In practice, considering W taking a particular value is equivalent to W taking a value in an appropriate interval.

Thus, from above:

 $\Pr(W_0 = 83) = \Pr(82.5 \le W < 83.5)$

To determine the value of this probability you could begin by measuring the weight of a large number of randomly chosen people, and determine the proportion of the people in the group who have weights in this interval.

Suppose after doing this a histogram of weights was obtained as shown.


From this histogram:

$$Pr(W_0 = 83) = Pr(82.5 \le W < 83.5)$$
$$= \frac{\text{shaded area from } 82.5 \text{ to } 83.5}{\text{total area}}$$

If the histogram is scaled so that the total area under the blocks is one, then:

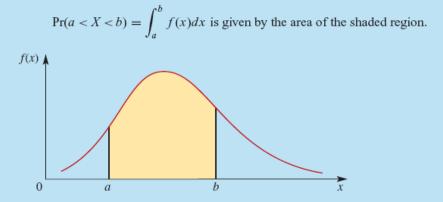
$$P(W_0 = 83) = Pr(82.5 \le W < 83.5)$$

= area under block from 82.5 to 83.5

Suppose that the sample size gets larger and the class interval width gets smaller. If theoretically this process is continued so that the intervals are arbitrarily small, the histogram can be modelled by a smooth curve, as shown in the following diagram.

The curve obtained here is of great importance for a continuous random variable.

The function f whose graph models the histogram as the number of intervals is increased is called the **probability density function**. The probability density function f is used to describe the probability distribution of a continuous random variable, X.


Now, the probability of interest is no longer represented by the area under the histogram, but the area under the curve. That is:

 $\Pr(W_0 = 83) = \Pr(82.5 \le W < 83.5)$

= area under the graph of the function with rule f(w) from 82.5 to 83.5

$$= \int_{82.5}^{83.5} f(w) dw$$

In general, for the continuous random variable X with density function f:

- ٠
- In order to be a probability density function a function must satisfy certain conditions.

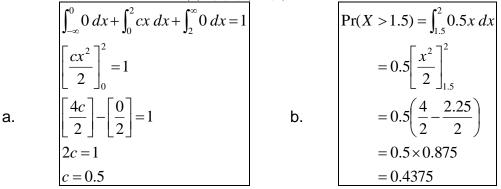
If the range of the continuous random variable X is [a, b] then the domain of its probability density function f is [a, b]. The probability density function will satisfy two properties:

1
$$f(x) \ge 0$$
 for all $x \in [a, b]$ and
2 $\int_{a}^{c} f(x)dx = 1$
Note that $\Pr(X < c) = \Pr(X \le c)$
 $= \int_{a}^{c} f(x)dx$

A probability density function (or its natural extension) satisfies the following two properties:

1
$$f(x) \ge 0$$
 for all x
2 $\int_{-\infty}^{\infty} f(x)dx = 1$

Note that, since the probability of X taking any exact value is zero, then:

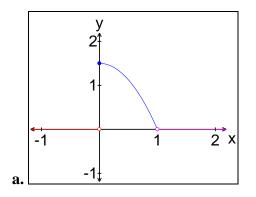

$$\Pr(a < X < b) = \Pr(a \le X < b) = \Pr(a < X \le b) = \Pr(a \le X \le b)$$

• That is, there is no difference between the numerical values of all of these expressions. **Example 1:** Suppose that the random variable *X* has the density function with the rule:

$$f(x) = \begin{cases} cx & 0 \le x \le 2\\ 0 & if \ x > 2 \ or \ x < 0 \end{cases}$$

- **a.** Find the value of *c* that makes *f* a probability function;
- **b.** Find Pr(X > 1.5)

Solution: Calculator: solve($\int (cx,x,0,2)=1,c$)

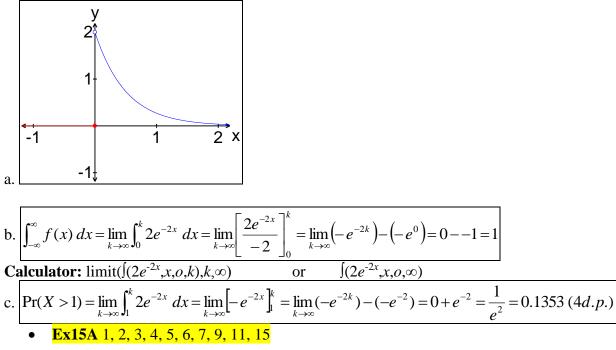


Example 2: Consider the function f with the rule:

$$f(x) = \begin{cases} 1.5(1-x^2) & 0 \le x \le 1\\ 0 & \text{if } x > 1 \text{ or } x < 0 \end{cases}$$

- **a.** Sketch the graph of f;
- **b.** Show that *f* is a probability density function;
- **c.** Find Pr(X > 0.5).

Solution:

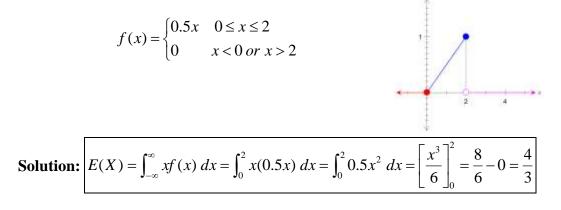

b.
$$\int_{-\infty}^{\infty} f(x) \, dx = \int_{0}^{1} 0.5(1-x^2) \, dx = 1.5 \left[x - \frac{x^3}{3} \right]_{0.5}^{1} = 1.5 \left[\left(1 - \frac{1}{3} \right) - 0 \right] = 1.5 \times \frac{2}{3} = \frac{3}{2} \times \frac{2}{3} = 1$$
c.
$$\Pr(X > 0.5) = \int_{0.5}^{1} 0.5(1-x^2) \, dx = 1.5 \left[x - \frac{x^3}{3} \right]_{0.5}^{1} = 1.5 \left[\left(1 - \frac{1}{3} \right) - \left(0.5 - \frac{0.125}{3} \right) \right] = 0.3125$$

Example 3: Consider the exponential probability density function f with the rule:

$$f(x) = \begin{cases} 2e^{-2x} & x > 0\\ 0 & x \le 0 \end{cases}$$

- **a.** Sketch the graph of f;
- **b.** Show that f is a probability density function;
- c. Find Pr(X > 1).

Solution:



Mean, median and mode for a continuous random variable.

Mean (Expected Value)

$$E(X) = \int_{-\infty}^{\infty} x f(x) \, dx$$

Example: Find the expected value of the random variable *I* which has probability density function with rule:

Example: If X is the random variable with probability density function f:

$$f(x) = \begin{cases} 0.5x & 0 \le x \le 2\\ 0 & x < 0 \text{ or } x > 2 \end{cases}$$

Find:

- a. the expected value of X^2 ;
- b. the expected value of e^{x} (4 d.p).

Solution:

a.
$$E(X^{2}) = \int_{-\infty}^{\infty} x^{2} f(x) dx = \int_{0}^{2} x^{2} (0.5x) dx = \int_{0}^{2} 0.5x^{3} dx = \left[\frac{x^{4}}{8}\right]_{0}^{2} = \frac{16}{8} - 0 = 2$$

b.
$$E(e^{x}) = \int_{-\infty}^{\infty} e^{x} f(x) dx = \int_{0}^{2} e^{x} (0.5x) dx = \int_{0}^{2} 0.5e^{x} x dx = 4.1945$$

Percentiles and the Median

50th percentile =
$$\int_{-\infty}^{p} f(x) dx = 0.5$$

in general: the "*n*th" percentile, $\int_{-\infty}^{p} f(x) dx = \frac{n}{100}$

Example: The duration of telephone calls to the order department of a large company is a random variable *X* minutes with probability density function:

$$f(x) = \begin{cases} \frac{1}{3}e^{\left(\frac{-x}{3}\right)} & x > 0\\ 0 & x \le 0 \end{cases}$$

Find the value of a such that 90% of phone calls last less than a minutes. **Solution:**

$$\int_{0}^{a} \frac{1}{3} e^{\left(\frac{-x}{3}\right)} dx = 0.9$$

$$\left[-e^{\left(\frac{-x}{3}\right)} \right]_{0}^{a} = 0.9$$

$$-e^{\left(\frac{-a}{3}\right)} + 1 = 0.9$$

$$-e^{\left(\frac{-x}{3}\right)} = -0.1$$
solve($\int (1/2e^{-x/3}, x, 0, a) = 0.9, a$)
$$e^{\left(\frac{-x}{3}\right)} = 0.1$$

$$\frac{-x}{3} = \log_{e} 0.1$$

$$\frac{-x}{3} = \log_{e} 0.1 \approx 6.908$$

therefore 90% of the calls to this company last less than 6.908 minutes.

Example: Suppose the probability density function of weekly sales of topsoil, *X* (in tonnes), is given by the rule:

$$f(x) = \begin{cases} 2(1-x) & 0 \le x \le 1\\ 0 & x < 0 & or \\ x > 1 \end{cases}$$

Find the median value of *X* and interpret the result.

Solution:

$$\int_{0}^{a} (2-2x) dx = 0.5$$

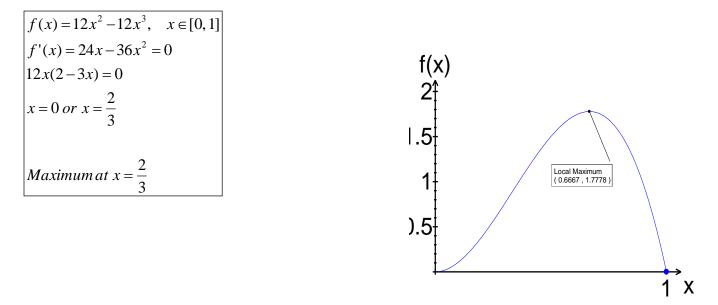
$$[2x - x^{2}]_{0}^{a} = 0.5$$

$$2m - m^{2} = 0.5$$

$$2m^{2} - 4m + 1 = 0$$

$$m = 0.293 \text{ or } m = 1.707$$
solve($\int (2-2x, x, 0, a) = 0.5, a$)

Because $0 \le x \le 1$ the median = 0.293 tonnes. This means 50% of the weekly sales will be less than 0.293 tonnes.


Mode

- the most common value of the variable *X*.
- for the probability density function this will be the local maximum.

Example: Find the mode of the CRV, *X* with the probability density function:

$$f(x) = \begin{cases} 12x^2(1-x) \, dx & 0 \le x \le 1\\ 0 & x < 0 \, or \, x > 1 \end{cases}$$

Solution:

 $\operatorname{fmax}(f(x), x) \mid 0 \le x \le 1$

• **Ex15B** 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 15

Measures of Spread

$$Var(X) = \sigma^{2} = E[(X - \mu)^{2}] = \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx = E(X^{2}) - \mu^{2}$$
$$sd(X) = \sqrt{Var(X)}$$

Example: Find the variance and standard deviation of the random variable *X* which has the probability density function with rule:

$$f(x) = \begin{cases} 0.5x & 0 \le x \le 2\\ 0 & x < 0 \text{ or } x > 2 \end{cases}$$

Solution:

$$Var(X) = \sigma^{2} = E(X^{2}) - \mu^{2}$$

$$E(X^{2}) = \int_{0}^{2} x^{2}(0.5x) dx = \int_{0}^{2} 0.5x^{3} dx = \left[\frac{x^{4}}{8}\right]_{0}^{2} = \frac{16}{8} - 0 = 2$$

$$E(X) = \mu = \int_{0}^{2} x(0.5x) dx = \int_{0}^{2} 0.5x^{2} dx = \left[\frac{x^{3}}{6}\right]_{0}^{2} = \frac{8}{6} - 0 = \frac{4}{3}$$

$$\therefore Var(X) = \sigma^{2} = E(X^{2}) - \mu^{2} = 2 - \left(\frac{4}{3}\right)^{2} = \frac{2}{9}$$

$$sd(X) = \sqrt{\frac{2}{9}} = \frac{\sqrt{2}}{3}$$

Range

The range of a random variable is the difference between the smallest and largest value (of X). i.e calculate from the domain of the probability density function.

IQR

The Interquartile Range is the range of the middle 50% of the distribution. It is the difference between the 75th percentile and the 25th percentile.

Example: Find the IQR of the random variable *X* which has the probability density function:

Г

$$f(x) = \begin{cases} 2x & 0 \le x \le 1\\ 0 & x < 0 \text{ or } x > 1 \end{cases}$$

Solution:

25th percentile:
$$\begin{bmatrix} \int_{0}^{a} 2x \, dx = 0.25 \\ [x^{2}]_{0}^{a} = 0.25 \\ a^{2} = 0.25 \\ a = \pm 0.5 \quad a = 0.5 \end{bmatrix}$$
75th percentile:
$$\begin{bmatrix} \int_{0}^{a} 2x \, dx = 0.75 \\ [x^{2}]_{0}^{a} = 0.75 \\ a^{2} = 0.75 \\ a = \pm \sqrt{0.75} \quad a = \frac{\sqrt{3}}{2} \end{bmatrix}$$
IQR=
$$\begin{bmatrix} \sqrt{3} - \frac{1}{2} = \frac{\sqrt{3} - 1}{2} \approx 0.366 \end{bmatrix}$$

• **Ex15C** 1, 2, 3, 5, 6, 9, 11

The Normal Distribution

Normal distributions are described by symmetric, bell-shaped curves. Area under the curve shows what decimal fraction of the observations lie in any region. The total area enclosed by the graph is equal to 1.

Standardised Normal Distribution

Example: There are two national (USA) college entrance exams, the Scholastic Aptitude Test (SAT) and the American College Testing program (ACT). Scores on the SAT's are approximately normal with a mean of 500 and a standard deviation of 100. Scores on the ACT are approximately normal with mean of 18 and a standard deviation of 6. Use this information to answer the following: Julie scores 630 on the mathematics part of the SAT. John takes the ACT mathematics test and scores 22. Assuming both tests measure the same kind of ability, who has the better result?

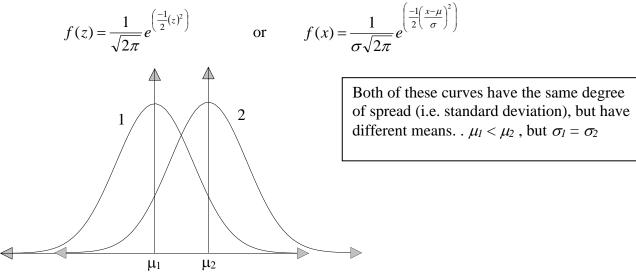
Solution:

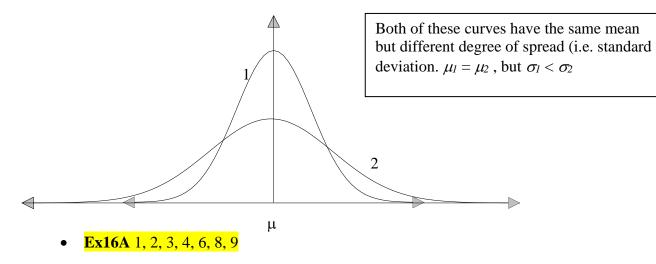
Julie: Score is 1.3 standard deviations above the mean: $\frac{630-500}{100} = \frac{130}{100} = 1.3$

John: Score is 0.67 standard deviations above the mean: $\frac{22-18}{6} = \frac{4}{6} = 0.67$

Therefore Julie had the better result!

So to standardise a normal result:

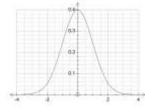

$$Z = \frac{x - \mu}{\sigma}$$
 where Z is the standardised normal value.

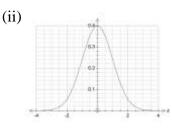

Notation: The random variable *X* has a normal distribution with mean μ and variance σ^2 is written as: $X \sim N(\mu, \sigma^2)$.

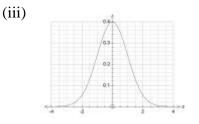
In the above example for SAT : $X \sim N(500,10000)$

Whereas the Standard normal variable, Z , has a mean of 0 and a standard deviation of 1. $Z \sim N(0,1)$

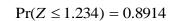
The Normal Probability Function is:

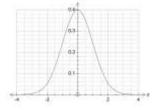


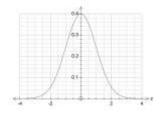


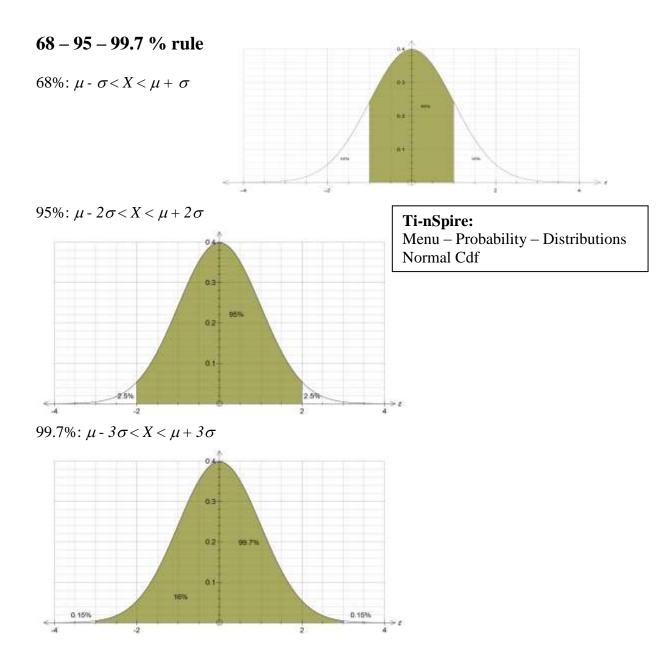

Standardised Values (Z values)

Example: Sketch the Normal Curve and shade the area for the following: (a) (i) $Pr(Z \le 2.5)$ (ii) Pr(Z < 0) (iii) $Pr(Z \le 1.234)$



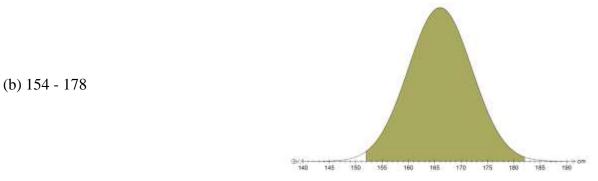

 $\Pr(Z \le 2.5) = 0.9938$

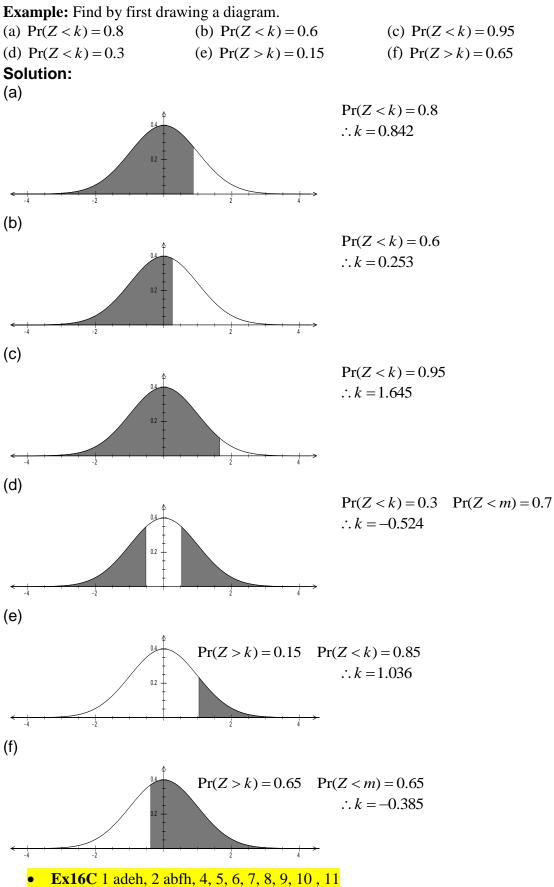

 $\Pr(Z \le 0) = 0.5$



(b) (*Tech Free)

Given Pr(Z > 0.78) = 0.2177 and $Pr(Z \le 1.234) = 0.8914$ find (i) $Pr(Z \le -0.78) = Pr(Z \le -0.78) = Pr(Z > 0.78) = 1 - Pr(Z < 0.78) = 1 - 0.7823 = 0.2177$ (ii) $Pr(-0.78 \le Z \le 1.234) = Pr(Z \le 1.234) - Pr(Z \le -0.78) = 0.8914 - 0.2177 = 0.6737$

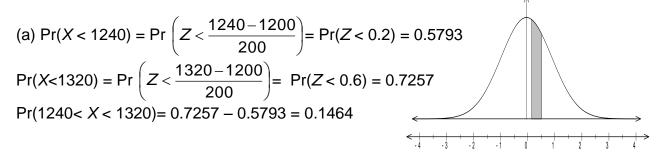



Example: The distribution of heights of young women is approximately normal with mean, $\mu = 166$ cm and standard deviation, $\sigma = 6$.

- (a) Using the curve below, mark its mean and standard deviations.
- (b) Between what two values do the heights of the central 95% of young women lie? Shade this area on the curve.

• **Ex16B** 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

Inverse Problems


Normal & Inverse Applications

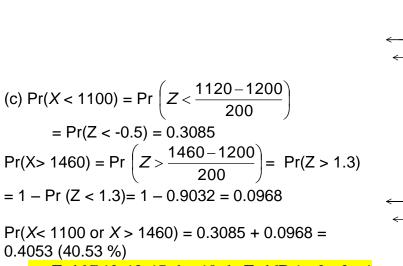
Example

A manufacturer of electric light globes finds that his articles have an average life of 1200 burning hours with a standard deviation of 200 hours. Assuming that the distribution of life-times is normal, (i) what is the probability of a globe selected at random having a life between 1240 and 1320 hours? (ii) out of a batch of 200 globes, how many would be expected to fail in the first 880 burning hours? (iii) what proportion of globes manufactured would be expected to have a life less that 1100 hours or more than 1460 hours?

Solution:

Let X = the number of burning hours

(b)
$$Pr(X < 880) = Pr(Z < -1.6) = Pr(Z > 1.6) = 1 - Pr(Z < 1.6) = 1 - 0.9452 = 0.0548$$

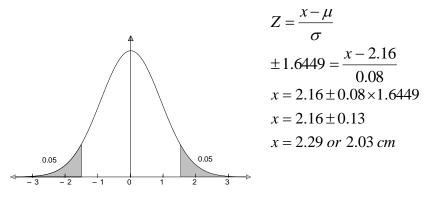

- 3

-2 -1

0

2

Expected number = $200 \times 0.0548 = 11$

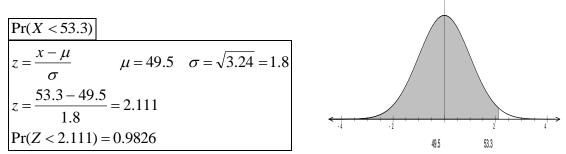


• **Ex16C** 12, 13, 17 abc, 18 ab; **Ex16D** 1a, 2a, 3a, 4

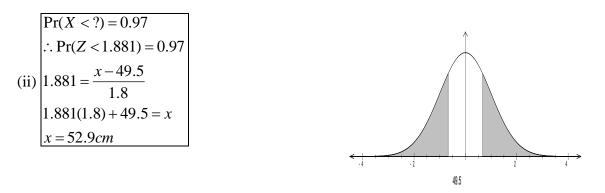
Example

A lathe turns out brass cylinders with a mean diameter of 2.16 cm and a standard deviation of 0.08 cm. Assuming that the distribution of diameters is normal, find the limits to the acceptable diameters if, on checking, it is found that 5 per cent in the long run rejected because they are oversize and 5 per cent are rejected because they are undersize.

Solution


• Ex16C 14, 15, 17 def, 18cde; Ex16D 1b, 2 bc, 3 b, 5, 6

Example: The lengths of newborn girls are normally distributed with a mean of 49.50cm and a variance of 3.24 cm.


- (i) Girls A's length at birth was 53.3cm. What percentile is she in for height (length)?
- (ii) Her sister, Girl B, was in the 97th percentile for length. How long was she at birth?
- (iii) Girl C was in the 25th percentile for length at birth. How long was she?

Solution:

(i) Let X = birth length in cm.

Therefore the girl is in the 98th percentile. This means 98% of all girls are shorter than girl A.

Pr(X < ??) = 0.25
Pr(Z < -0.674) = 0.25
(iii)
$$\therefore -0.674 = \frac{x - 49.5}{1.8}$$

 $-0.674(1.8) + 49.5 = x$
 $x = 48.3cm$

Example: Limits of acceptability imposed on the lengths of a certain batch of metal rods are 1.925 cm and 2.075 cm. It is observed that, on average, 5% are rejected as undersized and 5% are rejected as oversized.

Assuming that the lengths are normally distributed, find the mean and standard deviation of the distribution.

Solution:

Let X = the length of the metal rods (cm) $X \sim N(\mu, \sigma^2)$ 1.95 2.05 2.1 2.15 1.85 1.9 2 0 2 -1 -3 -2 Pr(X > 2.075) = 0.05 \therefore Pr(Z > 1.6448) = 0.05 $\therefore \Pr(Z < -1.6448) = 0.05$ $\Pr(X < 1.925) = 0.05$ $\therefore 1.6448 = \frac{2.075 - \mu}{\sigma} \quad \& \quad -1.6448 = \frac{1.925 - \mu}{\sigma}$ Solve simultaneously $\mu = 2cm$ & $\sigma = 0.0456cm$

• **Ex16D** 7, 10, 11; **Ch16** Review **TF** 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 **ER** 7, 8, 9, 10

The Normal Approximation to the Binomial Distribution

- We know the shape of the binomial distribution depends on *n* and *p*.
- If *n* is large and *p* is not too close to 0 or 1 then the distribution is close to symmetrical and starts to look like a Normal distribution
- When to use the normal approximation?
 - If *n* is sufficiently large (~25* or more) *depends on *p* also
 - \circ *P* is not too close to 0 or 1
 - General rule: np and n(1-p) is greater than 5
- If satisfied, then the Binomial random variable, *X*, will be approximately normally distributed with:
 - a mean of $\mu = np$;
 - a standard deviation of $\sigma = \sqrt{np(1-p)}$

Example: A sample of 1000 people from a certain city were asked to indicate whether or not they were in favour of the construction of a new freeway. It is known that 30% of people in this city are in favour of the new freeway. Find the approximate probability that between 270 and 330 people in the sample were in favour of the new freeway.

Solution:

Let X = the number of people in the sample who are in favour of the freeway.

$$X \sim \text{Bi}(n, p)$$
 $n = 1000 \& p = 0.3$
 $\mu = n \times p = 1000 \times 0.3 = 300$
 $\sigma = \sqrt{np(1-p)} = \sqrt{1000 \times 0.7 \times 0.3} = \sqrt{210}$
 $\text{Pr}(270 < X < 330) \approx \Pr\left(\frac{270 - 300}{\sqrt{210}} < Z < \frac{330 - 300}{\sqrt{210}}\right) \approx \Pr(-2.070 < Z < 2.070) \approx 0.9616$
Note: if we used the Binomial distribution to calculate this we obtain:
 $\Pr(270 < X < 330) = 0.9583$ and $\Pr(270 \le X \le 330) = 0.9648$

• **Ex16E** 1, 2, 3, 4, 5, 6

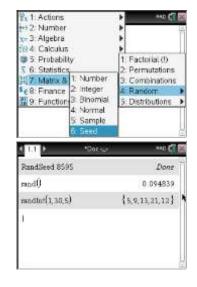
Sampling & Estimation

Populations & Samples

- A **population** is the set of all eligible members of a group which we intend to study.
- A **sample** is a subset of the population.
- A sample is used to make inferences about the population.
- We use sampling when:
 - The population is too large e.g. all AFL supporters in Australia.
 - \circ The population may be hard to access e.g. all Blue Whales in the Pacific Ocean.
 - \circ The data collection process may be destructive e.g. testing every battery to see how long it lasts, mean that there would be no batteries left to sell.

Random Sample

- When we select our sample, we don't want it to be biased towards a sub-group. For example, surveying people as they enter the MCG and asking "do enjoy Australian Rules football.
- A sample size then has to be selected in a way that every subset of the population has an equal chance of being selected.
- We call this the **Simple Random Sample**.
- Many methods can be used. A common method is to assign every member of the population a number and then use a **random number generator** to select the sample.


Example

A researcher wishes to evaluate how well the local library is catering to the needs of a town's residents. To do this she hands out a questionnaire to each person entering the library over the course of a week. Will this method result in a random sample?

Probably not, since the members of the sample are already users of the Library. Would be better sampling from the whole of the town's population.

Random Number Generator on the Ti-NSpire

- Menu Probability Random Seed then enter 4 random numbers, e.g. the last 4 numbers of your phone number. (e.g. RandSeed 8595)
- To get a random number between 0 and 1 use **Menu Probability Random Number.** (e.g. rand())
- For a random integer Menu Probability Random Integer .
 - To get 5 random integers between 1 and 30: randInt(1,30,5)

John	Mary	Bill	Jane	Fred	Lily
Shay	Rose	Lucy	Declan	Patrick	Louis
Harry	Ruby	Georgia	Tom	Darren	Alice
Kristin	Lee-Anne	Glen	Tim	Steve	Lachlan

Example: Use a random number generator to select 6 students from the following class:

Solution:

First assign numbers to each person in the class

John (1)	Mary (2)	Bill (3)	Jane (4)	Fred (5)	Lily (6)
Shay (7)	Rose (8)	Lucy (9)	Declan (10)	Patrick (11)	Louis (12)
Harry (13)	Ruby (14)	Georgia (15)	Tom (16)	Darren (17)	Alice (18)
Kristin (19)	Lee-Anne (20)	Glen (21)	Tim (22)	Steve (23)	Lachlan (24)

Then generate 6 random integers without repeats from 1 to 24.

e.g. 4, 15, 9, 7, 22, 13

which gives: Jane, Georgia, Lucy, Shay, Tim & Harry

The sample proportion as a random variable

	Population proportion $p = -$	number in population with attribut		
•	Topulation proportion p –	population size		

- In the above example there are 11 females and 13 males. So the proportion of female students in the class is $p = \frac{11}{24}$
- The **Sample Proportion**, \hat{p} , $\hat{p} = \frac{\text{number in sample with attribute}}{\text{sample size}}$ $p = \frac{x}{x}$ The proportion of females in our sample of 6 is $\hat{p} = \frac{3}{6} = \frac{1}{2}$
- ٠
- The population proportion, p, is a **population parameter**; its value is constant. •
- The sample proportion, \hat{p} , is a **sample statistic**; its value is not constant. ٠

Example: Use the same data from the previous example, select another random group of six. Determine the proportion of females in the sample.

Solution:

e.g. Chosen 6 are: 5, 6, 11, 19, 24, 10: Fred, Lily, Patrick, Kristin, Lachlan, Declan

$$\hat{p} = \frac{2}{6} = \frac{1}{3}$$
• **Ex17A** 1, 2, 3, 5, 6, 8, 12, 13, 14

The exact distribution of the sample proportion

Sampling from a small population

Example: A bag contains six blue and four red balls. If we take a random sample of size 4, what is

the probability that there is one blue ball in the sample ($\hat{p} = \frac{1}{4}$)?

Solution: Method 1: This can be done in 4 different ways: RRRB or RRBR or RBRR or BRRR

 $\Pr(RRRB, RRBR, RBR, BRRR, BRRR) = \left(\frac{4}{10} \times \frac{3}{9} \times \frac{6}{8} \times \frac{2}{7}\right) + \left(\frac{4}{10} \times \frac{3}{9} \times \frac{6}{8} \times \frac{2}{7}\right) + \left(\frac{4}{10} \times \frac{6}{9} \times \frac{3}{8} \times \frac{2}{7}\right) + \left(\frac{6}{10} \times \frac{4}{9} \times \frac{3}{8} \times \frac{2}{7}\right) = 4 \times \frac{2}{70} = \frac{8}{70} = \frac{4}{35}$

Method 2:

There are $\begin{pmatrix} 10\\4 \end{pmatrix} = 210$ ways to select 4 balls from 10 balls. There are $\begin{pmatrix} 4\\3 \end{pmatrix} = 4$ ways to select 3 red balls from 4 red balls and there are $\begin{pmatrix} 6\\1 \end{pmatrix} = 6$ ways to select 1 blue ball from 4 blue balls. Therefore the probability of obtaining 3 reds and 1 blue is $\frac{\begin{pmatrix} 4\\3 \end{pmatrix} \times \begin{pmatrix} 6\\1 \end{pmatrix}}{\begin{pmatrix} 10\\4 \end{pmatrix}} = \frac{4 \times 6}{210} = \frac{24}{210} = \frac{4}{35}$

The following is an extension of the previous example. This table gives the probability of obtaining each possible sample proportion \hat{p} when selecting a sample size of 4.

Number of blue balls in the sample (<i>x</i>)	0	1	2	3	4
Proportion of blue balls in the sample,	0	1	1	3	1
\hat{p}		$\frac{-}{4}$	$\overline{2}$	4	
Probability	1	24	90	80	15
	210	210	210	210	210

The last 2 rows form a probability distribution for the random variable, \hat{p} .

The distribution of a statistic which is calculated from a sample is called a sampling distribution.

Example: A bag contains six blue balls and four red balls. Use the sampling distribution in the previous table to determine the probability that the proportion of blue balls in a sample of size 4 is

more than $\frac{1}{\sqrt{2}}$

Solution:

$$\Pr\left(\hat{P} > \frac{1}{4}\right) = \Pr\left(\hat{P} > \frac{1}{2}\right) + \Pr\left(\hat{P} > \frac{3}{4}\right) + \Pr\left(\hat{P} > 1\right)$$
$$= \frac{90}{210} + \frac{80}{210} + \frac{15}{210} = \frac{185}{210} = \frac{37}{42}$$

Sampling from a large population

This is the most common case.

For example, suppose 70% of all 17 year olds in Australia attend school. i.e. p = 0.7

Now consider selecting a random sample of size 4 from the population of all 17 year olds in Australia. As this binomial then:

$$\Pr(X=x) = \binom{4}{x} 0.7^{x} 0.3^{4-x} \qquad x = 0,1,2,3,4$$

The sampling distribution will look like this:

Number at school in the sample (<i>x</i>)	0	1	2	3	4
Proportion at school in the sample, \hat{p}	0	0.25	0.5	0.75	1
Probability $\Pr(\hat{P} = \hat{p})$	0.0081	0.0756	0.2646	0.4116	0.2401

The population that the sample of size = 4 is being taken from is such that each item selected has a probability of p = 0.7 of success.

So we define the random variable, $\hat{p} = \frac{X}{4}$, $\hat{p} = \frac{x}{n}$ where X is a binomial random variable, p = 0.7 and n = 4. So the above table could be written as:

x	0	1	2	3	4
\hat{p}	0	0.25	0.5	0.75	1
$\Pr(\hat{P} = \hat{p}) = \Pr(X = x)$	0.0081	0.0756	0.2646	0.4116	0.2401

For example the probability, in the random sample of 4, the proportion attending school less than 50% is:

Pr $(\hat{P} < 0.5) = Pr(\hat{P} = 0) + Pr(\hat{P} = 0.25)$ = 0.0801 + 0.0756 = 0.0837

The Mean and Standard Deviation of the sample proportion

Example: Use the following distribution to determine the mean and standard deviation of the sample proportion \hat{P} from the previous example of 17 year olds.

X	0	1	2	3	4
\hat{p}	0	0.25	0.5	0.75	1
$\Pr(\hat{P} = \hat{p}) = \Pr(X = x)$	0.0081	0.0756	0.2646	0.4116	0.2401

Solution:

$$\begin{split} E(\hat{P}) &= \sum \hat{p} \times \Pr(\hat{P} = \hat{p}) \\ &= 0 \times 0.0081 + 0.25 \times 0.0756 + 0.50 \times 0.2646 + 0.75 \times 0.4116 + 1 \times 0.2401 \\ &= 0.7 \\ sd(\hat{P}) &= \sqrt{E(\hat{P}^2) - \left[(E(\hat{P}) \right]^2} \\ E(\hat{P}^2) &= \sum \hat{p}^2 \times \Pr(\hat{P} = \hat{p}) \\ &= 0^2 \times 0.0081 + 0.25^2 \times 0.0756 + 0.50^2 \times 0.2646 + 0.75^2 \times 0.4116 + 1^2 \times 0.2401 \\ &= 0.5425 \\ sd(\hat{P}) &= \sqrt{0.5425 - 0.7^2} = 0.2291 \end{split}$$

If we are selecting a random sample of size *n* from a large population, then the mean and standard deviation of the sample proportion \hat{P} are given by:

$$E(\hat{P}) = p$$
 and $sd(\hat{P}) = \sqrt{\frac{p(1-p)}{n}}$

Note: the standard deviation of a sample statistic is called the **standard error**.

From our 17 year olds example, we can see that these are the same as calculated in the previous example:

$$p = 0.7$$

 $sd(\hat{P}) = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.7 \times 0.3}{4}} = 0.2291$

Example: Suppose that 70% of 17 year olds in Australia attend school. If a random sample of size 20 is chosen from this population, find the probability that the sample proportion:

a is equal to the population proportion (0.7);

- **b** lies within one standard deviation of the population proportion;
- c lies within two standard deviations of the population proportion.

Solution:

a

b

If the sample proportion is $\hat{p} = 0.7$ and the sample size is 20, then the number of students in the sample is $0.7 \ge 0.7 \ge 14$.

$$\Pr(\hat{P} = 0.7) = \Pr(X = 14) = \binom{20}{14} \times 0.7^{14} \times 0.3^{6} = 0.1916$$

$$sd(\hat{P}) = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.7 \times 0.3}{20}} = 0.1025$$

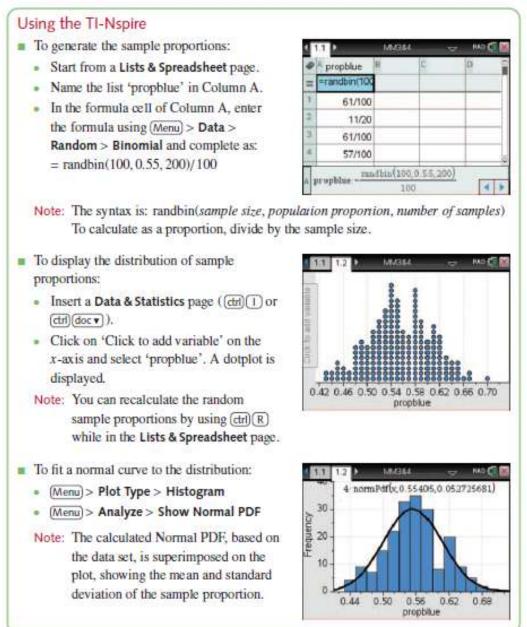
1 s.d. from the mean: 0.7 - 0.1025 = 0.5975 and 0.7 + 0.1025 = 0.8025 $0.5975 \times 20 = 11.95$ & $0.8025 \times 20 = 16.05$ $Pr(0.5975 \le \hat{P} \le 0.8025) = Pr(11.95 \le X \le 16.05) = Pr(12 \le X \le 16) = 0.7796$

c
2 s.d. from the mean:
$$0.7 - 2 \times 0.1025 = 0.495$$
 and $0.7 + 2 \times 0.1025 = 0.905$
 $Pr(0.495 \le \hat{P} \le 0.905) = Pr(9.9 \le X \le 18.1) = Pr(10 \le X \le 18) = 0.9752$

• **Ex17B** 1, 2, 4, 5, 8, 11, 12, 14

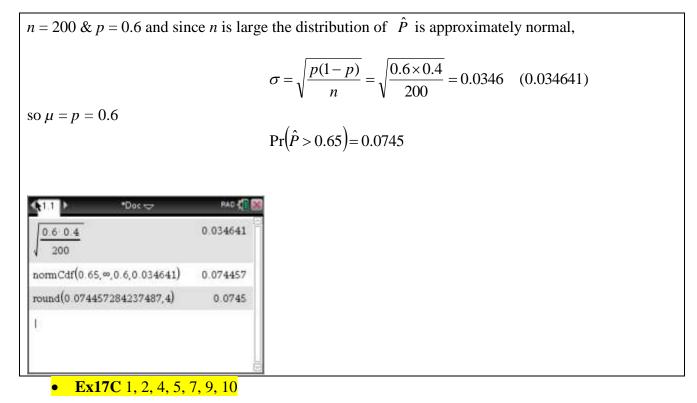
Approximating the distribution of the sample proportion

If the sample size, *n*, is large it is impractical to work out probabilities associated with the sample proportion.


We overcome this by approximating the distribution of the sample proportion.

As we have already seen a binomial distribution is well approximated by the normal distribution (remember np and np(1-p) should be greater than 10).

$$\circ \mu = p$$
 $\sigma = \sqrt{\frac{p(1-p)}{n}}$


Example: Assume 55% of people in Australia have blue eyes. Use your calculator to illustrate a possible distribution of sample proportions, \hat{p} , that may be obtained when 200 different samples (each of size 100) are selected from the population.

Solution:

Example: Assume 60% of people have driver's licence. Using the normal approximation, find the approximate probability that, in a randomly selected sample size 200, more than 65% of people have a driver's licence.

Solution:

Confidence intervals for the population proportion

Point estimates

The value of the sample proportion \hat{p} can be used to estimate the population proportion p. since this is a single-valued estimate, it is called the **point estimate** of p.

Interval estimates

An interval estimate for the population proportion *p* is called a **confidence interval** for *p*.

Using the Normal approximation and standardising, remember $Z = \frac{x - \mu}{\sigma}$.

We know that Pr(-1.96 < Z < 1.96) = 0.95, so

$$\Pr\left(-1.96 < \frac{\hat{P} - p}{\sqrt{\frac{p(1-p)}{n}}} < 1.96\right) \approx 0.95 \text{ which can be written as}$$
$$\Pr\left(-1.96\sqrt{\frac{p(1-p)}{n}} < \hat{P} - p < 1.96\sqrt{\frac{p(1-p)}{n}}\right) \approx 0.95 \text{ then}$$
$$\Pr\left(\hat{P} - 1.96\sqrt{\frac{p(1-p)}{n}}$$

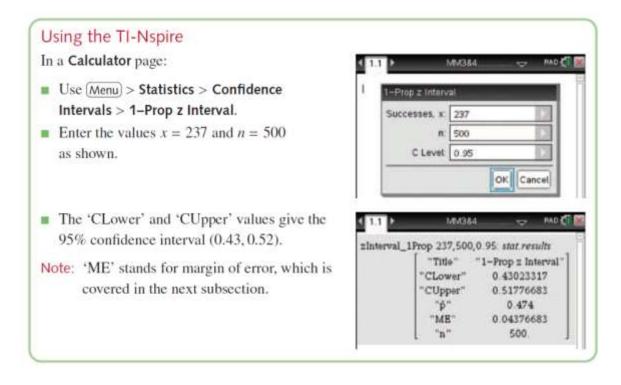
This is the **95% confidence interval** for *p*.

 \circ *p* is the population proportion;

- \circ \hat{p} is the value of the sample proportion;
- \circ *n* is the size of the sample from which \hat{p} was calculated.

Example: Find an approximation 95% confidence interval for the proportion p of primary school children in Australia who regularly use social media, if we select a random sample of 20 children and find the sample population \hat{p} to be 0.7.

Solution:


$$\hat{p} = 0.7 \text{ and } n = 20$$

 $\sigma = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.7 \times 0.3}{20}} = 0.1025$

so 95% :

 $(0.7 - 1.96 \times 0.1025, 0.7 + 1.96 \times 0.1025) = (0.499, 0.901)$

So based on a sample size of 20 there is a 95% confidence interval for the population proportion p is (0.499, 0.901).

Using a calculator to determine confidence intervals

Precision and margin of error

In the example with the school children, we found the 95% confidence interval (0.499, 0.901) for the proportion p of primary school children who use social media, based on a sample size of 20. This means we are predicting the population proportion is somewhere in the range of approximately 50% to 90%. Not a good prediction.

If we change the random sample size to 200:

$$P = 0.7, n = 200$$
 $\Rightarrow \sigma = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.7 \times 0.3}{200}} = 0.0324$

So the confidence interval is calculated as:

$$\left(0.7 - 1.96\sqrt{\frac{0.7 \times 0.3}{200}}, \quad 0.7 + 1.96\sqrt{\frac{0.7 \times 0.3}{200}}\right) = \left(0.636, 0.764\right)$$

So based on a sample size of 200 and a sample estimate of 0.7, an approximate 95% confidence interval for the population proportion p is (0.636, 0.764) i.e. between 64% and 76%.

The difference between the sample estimate and the confidence interval endpoints is called the **Margin of Error**, *M*. For a 95% confidence interval it is given as:

$$M = 1.96\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Example: Determine the sample size required to achieve a margin of error of 2% in an approximate 95% confidence interval for the proportion p of primary school children in Australia who use social media, if the sample proportion \hat{p} is found to be 0.7.

Solution:

$$M = 0.02 \ \& \ \hat{p} = 0.7 \quad M = 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$
$$0.02 = 1.96 \sqrt{\frac{0.7 \times 0.3}{n}}$$
$$\left(\frac{0.02}{1.96}\right)^2 = \frac{0.7 \times 0.3}{n} \implies n = \frac{0.7 \times 0.3}{\left(\frac{0.02}{1.96}\right)^2} = 2016.84$$

So to achieve a margin of error of 2%, we need a sample size of 2017.

A 95% confidence interval for a population proportion p will have margin of error approximately equal to a specified value of M when the sample size is:

$$n = \left(\frac{1.96}{M}\right)^2 p^* (1-p^*) \qquad p^* \text{ is an estimated value for the population proportion } p.$$

In general, a *C*% confidence interval is given by:

$$\boxed{\left(\hat{p} - k\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + k\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)} \text{ where } k \text{ is such that: } \boxed{\Pr(-k < Z < k) = \frac{C}{100}}$$

e.g. a 99% confidence will be
$$\boxed{\left(\hat{p} - 2.58\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + 2.58\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)}$$

because $\boxed{\Pr(-2.58 < Z < 2.58) \approx 0.99}$

Example: Calculate the 90%, 95% and 99% confidence interval for the primary school children in Australia who use social media, with a random sample size of 200 and \hat{p} of 0.7.

Solution:

95%: (0.636, 0.764)
90%:
$$\boxed{\left(0.7 - 1.65\sqrt{\frac{0.7 \times 0.3}{200}}, \quad 0.7 + 1.65\sqrt{\frac{0.7 \times 0.3}{200}}\right) = \left(0.647, 0.753\right)}$$
99%:
$$\boxed{\left(0.7 - 2.58\sqrt{\frac{0.7 \times 0.3}{200}}, \quad 0.7 + 2.58\sqrt{\frac{0.7 \times 0.3}{200}}\right) = \left(0.616, 0.783\right)}$$

So obviously the greater the confidence then wider the interval is required.

• **Ex17D** 1, 2, 3, 4, 6, 7, 9, 11, 12

Past Exam Questions 2008 Exam 1 2008 Exam 2 Question 11 The probability density function for the continuous random variable X is given by $f(x) = \begin{cases} 1-x & \text{if } 0 \le x \le 2 \\ 0 & \text{elsewhere} \end{cases}$ The probability that X < 1.5 is equal to A 0.125 B 0.375 C 0.5 D 0.625 E 0.75 Puestion 1 Puestion 2 Puestion 1 Puestion 1 Puestion 2 Puestion 2 Puestio	 A base of fiber fellow independent to share the second places. Here the dimensions of a tensor half which the second places in the second places. A base of fiber fellow independent as examples. When is the avoid places, compare to have descepted attents. Here is the second places in the second places. A base of fiber fellow independent as examples. When is the avoid places in the second places. A base of fiber fellow independent is compared to many descent in the second places. A base of fiber fellow independent is compared to many descent in the second places. A base of fiber fellow independent is compared to many descent in the second places. A base of fiber fellow independent is compared to many descent in the second places. A base of fiber fellow independent is compared to many descent in the second places. A base of fiber fellow independent is compared to many descent in the second places. A base of the second the intervent independent is the second intervent intervention.
	$\begin{array}{c} \hline \begin{array}{c} \textbf{2010 Exam 1} \\ \hline \textbf{Question 5} \\ Let $2^{the is normality distribution frances multiple with messa 5 and versions 9 and let $2^{the the modern variable with messa 5 and versions 9 and 10 and 10$
What is the probability, correct to four decinial places, that Sharolle spends less than 3 hours training on a particular day?	$F_{\text{Two events that }} = Fr(X = 7) = Fr(Z = \delta)$ Fund by such that $Fr(X = 7) = Fr(Z = \delta)$
2009 Exam 1 2009 Exam 2 Question 6 The continuous random variable X has a normal distribution with mean 14 and standard deviation 2. If the random variable Z has the standard normal distribution, then the probability that X is greater than 17 is equal to	where a fit a basility a prostant. n Plant the value of n. b. Pupters Pr(V = 3) as a definite integral. (35 a not evaluate the definite integral.) A marks t marks 2010 Exam 2
A. $Pr(Z > 3)$ B. $Pr(Z < 2)$ C. $Pr(Z < 1.5)$ D. $Pr(Z < -1.5)$ E. $Pr(Z > 2)$ Question 11 The continuous random variable X has a probability density function given by $f(x) = \begin{vmatrix} x \sin(2\pi x) & \text{if } 0 \le x \le \frac{1}{2} \\ 0 & \text{elsewhere} \end{vmatrix}$	Question 11 The continuous random variable X has a probability density function given by $f(x) = \begin{vmatrix} \cos(2x) & \text{if } & \frac{3\pi}{4} < x < \frac{5\pi}{4} \\ 0 & \text{sbarwhere} \end{vmatrix}$ The value of a such that $\Pr(X < a) = 0.25$ is closest to A. 2.25 B. 2.75 C. 2.68 D. 3.06 E. 3.41
The value of a such that $Pr(X > a) = 0.2$ is closest to A. 0.26 B. 0.30 C. 0.32 D. 0.35 E. 0.40	$ \begin{array}{l} \hline \textbf{Question 13} \\ The continuous random variable X has a normal distribution with mean 20 and standard deviation 6. The containious random variable Z has the standard normal distribution. The probability that Z is between -2 and 1 is equal to A. Pr(18 \leq X \leq 21) \\ B. Pr(14 \leq X \leq 32) \\ C. Pr(14 \leq X \leq 32) \\ D. Pr(8 \leq X \leq 32) \\ E. Pr(X \geq 14) + Pr(X \leq 26) \\ \end{array} $
2 marks BBE: management would like each half produced to have dismuster between 65.0 and 60.4 inter 5. When is the production, issues to Drue doe not glaces. But the dismeter of a surdenily oderined terms half much by help's to us the range? 2 merels	

2011 Exam 1	d. It can be shown that Pr(T ≤ 3) = ⁹ / ₃₂₂ A random sample of 10 chocolates produced by machine B is chosen. Find the prohability, correct to four decimal places, that exactly 4 of these 10 chocolates took 3 or less.
The probability distribution function for the continuous random variable X is given by $- \frac{1}{2} \left[\frac{1}{2} - x \right] = 0$, $Z \in X \in A$	seconds to produce.
$f(x) = \begin{cases} x - x & (f - 2 \in x) = 4 \\ 0 & x \text{ indexveloars} \end{cases}$ a. Find $Pe(X = 2, 5)$.	
	2
eduan C	3 <u></u>
h. Find $\Pr(X \leq 2.8 \mid X \leq 3.4)$.	
	3 marks
3 marks	Add of the environment produced to meetings of and matching if size started or a large him. These is an equid provider of choosing flow advancement with the flow. If is found that if a choosidete, produced by either mechanic, taking logger than if seconds to produce then it is an many fix (determined by a display colored
2011 Exam 2	 anoth the information but its dischars colour: A choicedure is informed to constant from the han. It is formed to have entries seeinger them 3 meanwhile to predictly from a finite constant of the meanwhile to predictly from a finite predicted for mechanics.
Questia ă	-
For the continuous random variable X with probability density function	
$\log_{\sigma}(x) 1 \le x \le r$	
$\mathcal{J}(\mathbf{x}) = \begin{cases} \log_{\sigma}(\mathbf{x}) & 1 \leq s \leq r \\ 0 & \text{chrowhere} \end{cases}$	
the expected value of $X, E(X)$, is closest to	
A. 0.358 8. 0.5	
C. 1	
D. 1839 E. 2.097	2012 Exam 1
2, 2007	2012 Exam 1
	Ouestine 8
Question 12	a. The random variable X is normally distributed with mean 100 and standard deviation 4
The continuous random variable X has a normal distribution with mean 30 and standard deviation 5. For a given number a , $Pr(X > a) = 0.20$.	If $Pr(X \le 106) = q$, find $Pr(94 \le X \le 100)$ in terms of q
Correct to two decimal places, a is equal to	
A. 2339	<u> </u>
B. 24.00	
C. 2579	
D. 34.21 E. 36.41	
E. 2011	<u></u>
	2 marks
Question 13	b. The probability density flucture f of a random variable A is given by $f(x) = \begin{bmatrix} \frac{x+1}{14} & 0 & x \le 4 \\ 0 & \text{minute} x \text{ tor} \end{bmatrix}$
In an orchard of 2000 apple trees it is found that 1735 trees have a height greater than 2.8 metres. The heights	$\int_{-\infty}^{-\infty} 0\rangle = \begin{bmatrix} 1,2 \\ 0 & \text{indervative} \end{bmatrix}$ Find the value of b such that $V(X \equiv b) = \frac{6}{2}$.
are distributed normally with a mean μ and standard deviation 0.2 metres.	
The value of μ is closest to	
A. 3.023	
B. 2.577	
C. 2.230	
D. 1.115	
E. 0.223	3 marka
Question 1 In a chocolairs factory the material for making each chocolairs is used to one of two machines, muchane A (2	-
machine $\bar{\sigma}$. The time, \bar{x} seconds, taken to produce a chercolate by machine A , is normally distributed with mean λ and	2012 Exam 2
visultard deviation 0.6. The tune, F seconds, taken to produce a chocolate by machine R, has the following probability desuity function.	2012 Exam 2
0 y < 0	Question 11
$P(p) = \begin{cases} \frac{p}{16} & 0 \le p \le 4 \\ \frac{p}{16} & 0.25e^{-6(p_0-4)} & p > 4 \end{cases}$	The weights of bags of flour are normally distributed with mean 252 g and standard deviation 12 g. The
(0.25e ^{-0.1}), $p > 4$ a. Faul convet to finic designal places	numufacturer says that 40% of bags weigh more than x g
$\mathbf{i} = \Pr(0 \le k \le 5)$	The maximum possible value of x is closest to
	A. 2490
	B. 251.5
$\mathbf{H}_{\mathbf{r}} = \mathbf{P}(\mathbf{G} \leq \mathbf{F} \leq \mathbf{S})$	C. 2535
	D. 254.5
	E. 255.0
	2013 Exam 1
1 + 3 = 4 marks	Question 912 mailed
 Find the mean of P, correct to three decimal places. 	is continuous conduct variable, X has a probability density function $p_{\{\frac{1}{2},$
	Just 4 1 4 J advantage
	$Correct Hass \left(\frac{d}{dx}\left(+\sin\left(\frac{d(x)}{4}\right)\right) - \frac{d(x)}{4}\sin\left(\frac{d(x)}{4}\right) + -\sin\left(\frac{d(x)}{4}\right) \operatorname{Hass} E(X)$
) marks	
c. i. Find the median of F.	-
ii. Find the value of a , correct to two deviand places, such that $Pr(T \leq a) = 0.7$.	

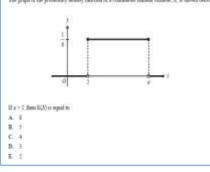
1 + 2 = 3 marks

201	<u>3 Exam 2</u>		Question 16	
0	uestion 22		The continuous random variable X , with probability density function $p(x)$, has mean 2 and varia	anco 5
1.12	return 2.5 iterflies of a particular specses die T-days after liatching, where T is a normally distributed random	variable	The conditions ishowin variable A, while providently definity function pAst, has ment 2 and varia	ance J.
	th a mean of 120 days and a standard deviation of σ days.	000000-30	The value of $\int_{-\infty}^{\infty} x^2 p(x) dx$ is	
1.1200.0	from a population of 2000 newly hatched butterflies, 150 are expected to die in the first 90 days, t	ften fter	and the second se	
	line of σ is closest to		A. 1	
A	7 days		B, 7	
В.	13 days		C. 9	
c	-17 days		D. 21	
D	21 days			
E.	37 days		E. 29	
10	When Fullyful surveyed all 0v gyms flavoughout the world, it was frond that the time token by members to complete 8 is a continuum random variable 3', with a probability density function			
	g, as defined before		Question 4 (14 marks) Patricia is a guidener and she owns a guiden numery. She grows and sells besil plants and coriander	
	$\frac{(2\tau - 3)^3 + 64}{250}$ $1 \le v \le 3$		plants.	
	$B(x) = \frac{x+2B}{x+2B}$ $b = x \in A$		The heights, in centimetres, of the basil plants that Patricia is selling are distributed normally with a	
	128 9 shewlere		mean of 14 cm and a standard deviation of 4 cm. There are 2000 basil plants in the mesery.	
	and the second		 Petricia classifies the tallest 10 per cent of her basil plants as super. 	
	 Find SUO, correct to four domain pheno. 	2 tooth-	What is the minimum height of a super baul plant, correct to the nearest millimetre?	1 mark
			51	
			37	
Ш.	In a random sample of 200 FullyFit members, how many members would be expected to take more than four minutes to complete S7 Give your answer to the nearest integer.	2 marks		
	to take usive this sour mannes to complete 5. Give your answer to use nearest merger	2 IIMIAS	Patricia decides that some of her basil plants are not proving quackly enough, so she plant to move them to a special preedense. She will move the basil plants that are less than 9 cm in height.	
			b. How many basil plants will Patricia move to the greenhouse, every to the marrest whole	
				2 merks
			The heights of the conunder plants, x centametres, follow the probability density function $h(x)$,	
			where where the second se	
201	<mark>4 Exam 1</mark>		$h(x) = \left(\frac{\pi}{100} \sin\left(\frac{\pi}{20}\right) - 0 \le x \le 50$	
	entition #.24 annihity		0 otherwise	
20	nationary random versible. X, has a probability domaily flam transition given by		c. State the mean height of the commiler plants	1 mark
	$F(x) = \begin{bmatrix} \frac{1}{2}x^{-1} & 0 & x & 0 \\ 0 & x & x & 0 \end{bmatrix}$		92	
1.22	e anastisan sof X is is:			
- 265	Determine the value of m.	C market		
		-		
			Putricia thinks that the smallest 15 per-cent of her consider plants should be given a new type of	
			plant food.	
			 Find the maximum height, correct to the assess millimetre, of a commune plant if it is to be given the new type of plant food. 	2 marks
				A-3410-01
b,	The value of m is a number greater than 1.			
	Find $Pr(X \le u)$.	2 marks		
			Patricia also grows and sells tomato plants that she classifies as either fall or regular. She finds that 20 per cent of her tomato plants are fall.	
			A costomer, Jack, selects a tomato plants at random	
			e. Let g be the probability that at least one of Tack's a tomato plants is tall.	
			Find the minimum value of n so that g is greater than 0.93.	2 marks
0.01				23
<mark>201</mark>	<mark>4 Exam 2</mark>			
Que	stion 5			
1.50	random variable X has a normal distribution with mean 12 and standard deviation 0.5		In mother section of the mesery, a craftsman makes plant pots. The pots are classified as smooth or	Ê
			rough.	
1f Z	has the standard normal distribution, then the probability that X is less than 11.5 is equal to)	The craftman faushes each pot before starting on the next. Over a period of time, it is found that if	S
A	Pr(Z>-1)		one plant pot is smooth, the probability that the next one is smooth is 0.7, while if one plant pot is rough, the probability that the next one is rough is p , where $0 . The value of p stays fixed for$	
B.	Pr(Z<-0.5)		a week at a time, but can vary from week to week. The first pot made each week is always a smooth	
			pot	
155	Pr(Z > 1)		 Find, in terms of p, the probability that the third pot made in a given week is smooth. 	2 marks
D.	$\Pr(Z \ge 0.5)$			
E,	$Pr(Z \le 1)$			2
				e l
			ii. In one particular week, the probability that the third pot made is smooth is 0.61.	
			Calculate the value of p in this week.	2 marks
			where the write is provided in the second seco	
				0
			· · · · · · · · · · · · · · · · · · ·	

2015 Exam 1	Question 13 The function <i>f</i> is a probability density function with rule	
Question 6 (3 marks) Let the random variable X be normally distributed with mean 2.5 and standard deviation 0.3 Let Z be the standard normal random variable, such that $Z = N(0, 1)$. a. Find b such that $Pr(X > 3, 1) = Pr(Z \le b)$.	I mark $f(x) = \begin{bmatrix} ax^2 & 0 \le x \le 1 \\ ax & 1 \le x \le 2 \\ 0 & \text{otherwise} \end{bmatrix}$ The value of a m A = 1	
b. Using the fact that, correct to two decimal places, $Pr(Z \le -1) = 0.16$, find $Pr(X \le 2.8 X \ge 2.5)$. Write the masser correct to two decimal places.	$\frac{1}{2} \max \frac{1}{2e^{-1}}$ B. e $\frac{1}{2e^{-1}}$ E. $\frac{1}{2e^{-1}}$	
	$ \begin{aligned} & \text{Question 3} (1) \mbox{ match} 0 \\ & \text{Max} is a first grown After has oranges have been picked, they are sensed by a markner, eccentrage to use Oranges choosed are solded to first dops and the meanwhere are marked into energy pice. The destructions of the damates is, a creation or endowing marked by a containers marked are verified. The destruction, the order of the damates is a creation or endowing marked are ready of the first of the damates of the damates$	t marks.
2015 Exam 2		
Quarking 9 The graph of the probability density functions of a continuous random vanishie, \mathcal{R} is disconsistent	N. Mina moderaly selects three anothers magns	

Foul the probability that exactly use of the samples has a diameter preter than 7 cm. Express the answer in the firm $\frac{a}{b}$ where a and b are positive astropes

Neuronetta sidente vien del Market anno 1935 el une native tande fuero actualizzation vien. 2016 en la constatta en actualizzationetta fatto de actualizzationetta actualizzationetta de la constatta de se


B. Suppose that needed of selecting only from fermion, a linear set selected at machine from a particular load. Fault from conflord targets values of y such that the postshulty of at least one former. hence independent encoded in 5.

b. Find the mean diameter of medium oranges, in contimetres.

2 meks

1 mark

1 costs

