CHANGE OF BASIS VS CHANGE OF COORDINATES

- Let B = {u, v} be some basis in the vector space V = ℝ². Then then every vector b can be uniquely written as a linear combination b = y₁u + y₂v. The numbers y₁, y₂ are called the B-coordinates of b.
- Let $C = \{i, j\}$ be another basis in V. For example, let's take i = 2u 1v and j = 1u + 1v. This relation between the B- and the C-bases can also be written in matrix form as

$$\begin{bmatrix} \mathbf{i} & \mathbf{j} \end{bmatrix} = \begin{bmatrix} \mathbf{u} & \mathbf{v} \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix}$$

• If $\mathbf{b} = x_1 \mathbf{i} + x_2 \mathbf{j}$ is any vector in V, then

b =
$$x_1 (2\mathbf{u} - \mathbf{v}) + x_2 (\mathbf{u} + \mathbf{v})$$

= $(2x_1 + x_2) \mathbf{u} + (-x_1 + x_2) \mathbf{v}.$

Thus, the transformation from the C-coordinates to the $\mathcal B$ coordinates is given by

$$\left[\begin{array}{c} y_1 \\ y_2 \end{array}\right] = \left[\begin{array}{cc} 2 & 1 \\ -1 & 1 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right].$$

• Vector **u** spans a line *L* that consists of all vectors $\mathbf{b} = y_1\mathbf{u} + y_2\mathbf{v}$ whose y_2 -coordinate is 0. In terms of the *C*-coordinates, *L* consists of all vectors $\mathbf{b} = x_1\mathbf{i} + x_2\mathbf{j}$ such that

$$y_2 = \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0.$$

• Similarly, Span $\{v\}$ is a line that consists of all vectors $\mathbf{b} = x_1\mathbf{i} + x_2\mathbf{j}$ such that

$$y_1 = \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0.$$

More generally, any line that is parallel to **u** or **v** is given by an equation $\mathbf{r} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = const$, where **r** is $\begin{bmatrix} -1 & 1 \end{bmatrix}$ or $\begin{bmatrix} 2 & 1 \end{bmatrix}$ respectively.

Summary.

• The rows of the matrix $A = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix}$ describe the transformation from the *C*-coordinates to the *B* coordinates:

$$y_1 = \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$y_2 = \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• The columns of A describe the change from the \mathcal{B} -basis to the \mathcal{C} -basis:

$$\mathbf{i} = \begin{bmatrix} \mathbf{u} & \mathbf{v} \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \quad \mathbf{j} = \begin{bmatrix} \mathbf{u} & \mathbf{v} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

• The (red) coordinate grid, that is formed by vectors parallel to **u** or **v**, consists of lines whose *C*-coordinates satisfy either to the equation

$$\left[\begin{array}{cc} 2 & 1 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \text{Const}$$

or to the equation

$$\begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 = Const.