CHANGE OF BASIS VS CHANGE OF COORDINATES

- Let $\mathcal{B}=\{\mathbf{u}, \mathbf{v}\}$ be some basis in the vector space $V=\mathbb{R}^{2}$. Then then every vector \mathbf{b} can be uniquely written as a linear combination $\mathbf{b}=y_{1} \mathbf{u}+y_{2} \mathbf{v}$.
The numbers y_{1}, y_{2} are called the \mathcal{B}-coordinates of \mathbf{b}.
- Let $\mathcal{C}=\{\mathbf{i}, \mathbf{j}\}$ be another basis in V. For example, let's take $\mathbf{i}=2 \mathbf{u}-1 \mathbf{v}$ and $\mathbf{j}=1 \mathbf{u}+1 \mathbf{v}$. This relation between the \mathcal{B} - and the \mathcal{C}-bases can also be written in matrix form as

$$
\left[\begin{array}{ll}
\mathbf{i} & \mathbf{j}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{u} & \mathbf{v}
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right]
$$

- If $\mathbf{b}=x_{1} \mathbf{i}+x_{2} \mathbf{j}$ is any vector in V, then

$$
\begin{aligned}
\mathbf{b} & =x_{1}(2 \mathbf{u}-\mathbf{v})+x_{2}(\mathbf{u}+\mathbf{v}) \\
& =\left(2 x_{1}+x_{2}\right) \mathbf{u}+\left(-x_{1}+x_{2}\right) \mathbf{v} .
\end{aligned}
$$

Thus, the transformation from the \mathcal{C}-coordinates to the \mathcal{B} coordinates is given by

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

- Vector \mathbf{u} spans a line L that consists of all vectors $\mathbf{b}=y_{1} \mathbf{u}+y_{2} \mathbf{v}$ whose y_{2}-coordinate is 0 .

In terms of the \mathcal{C}-coordinates, L consists of all vectors $\mathbf{b}=x_{1} \mathbf{i}+x_{2} \mathbf{j}$ such that

$$
y_{2}=\left[\begin{array}{ll}
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=0
$$

- Similarly, $\operatorname{Span}\{\mathbf{v}\}$ is a line that consists of all vectors $\mathbf{b}=x_{1} \mathbf{i}+x_{2} \mathbf{j}$ such that

$$
y_{1}=\left[\begin{array}{ll}
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=0
$$

More generally, any line that is parallel to \mathbf{u} or \mathbf{v} is given by an equation $\mathbf{r}\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=$ const, where \mathbf{r} is $\left[\begin{array}{ll}-1 & 1\end{array}\right]$ or $\left[\begin{array}{ll}2 & 1\end{array}\right]$ respectively.

Summary.

- The rows of the matrix $A=\left[\begin{array}{cc}2 & 1 \\ -1 & 1\end{array}\right]$ describe the transformation from the \mathcal{C}-coordinates to the \mathcal{B} coordinates:

$$
\begin{aligned}
& y_{1}=\left[\begin{array}{ll}
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& y_{2}=\left[\begin{array}{ll}
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

- The columns of A describe the change from the \mathcal{B}-basis to the \mathcal{C}-basis:

$$
\mathbf{i}=\left[\begin{array}{ll}
\mathbf{u} & \mathbf{v}
\end{array}\right]\left[\begin{array}{c}
2 \\
-1
\end{array}\right], \quad \mathbf{j}=\left[\begin{array}{ll}
\mathbf{u} & \mathbf{v}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

- The (red) coordinate grid, that is formed by vectors parallel to \mathbf{u} or \mathbf{v}, consists of lines whose \mathcal{C}-coordinates satisfy either to the equation

$$
\left[\begin{array}{ll}
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\mathrm{Const}
$$

or to the equation

$$
\left[\begin{array}{ll}
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\text { Const. }
$$

