VISUALIZATION OF KALMAN STEPS

EUGENE YABLONSKI

The applet visualizes the first two steps of a simple Kalman filter. We follow the notations and terminology from the Welch \& Bishop's paper [1].

1. Estimating a Random constant

Let x and v_{1}, v_{2} be independent centered random variables with finite 2 nd moments:

$$
\begin{aligned}
P_{0} & =E x^{2} \\
R & =E\left(v_{1}\right)^{2}=E\left(v_{2}\right)^{2} .
\end{aligned}
$$

Let $z_{1}=x+v_{1}$ and $z_{2}=x+v_{2}$.
We interpret z_{1} and z_{2} as noisy measurements of x.
Problem. Given z_{1} and z_{2}, find the best linear estimate $\hat{x}=c_{1} z_{1}+c_{2} z_{2}$ of x in the sense that $E(x-\hat{x})^{2}$ is as small as possible.

Moreover, perform this task recursively:

1. First, approximate x by a multiple of z_{1}; that would produce an estimate $\hat{x_{1}}=K z_{1}$ for some K;
2. Then, determine \hat{x} as a linear combination of $\hat{x_{1}}$ and z_{2}.

2. Geometric Interpretation of the problem

- The space $\operatorname{Span}\left(x, z_{1}, z_{2}\right)=\left\{c_{0} x+c_{1} z_{1}+c_{2} z_{2} \mid c_{i} \in \mathbb{R}\right\}$ with the scalar product $u \cdot v=E(u v)$ is a Euclidean space.
- Consider the norm $\|u\|=\sqrt{u \cdot u}$. In our notations:

$$
\begin{aligned}
\|x\|^{2} & =P_{0} \\
\left\|v_{1}\right\|^{2}=\left\|v_{2}\right\|^{2} & =R
\end{aligned}
$$

Problem. Find the orthogonal projection $\hat{x_{2}}$ of the variable x onto the subspace $\operatorname{Span}\left(z_{1}, z_{2}\right)=$ $\left\{c_{1} z_{1}+c_{2} z_{2} \mid c_{i} \in \mathbb{R}\right\}$.

Specifically, implement this as a recursive procedure:

1. First find the projection $\widehat{x_{1}}$ of x onto $\operatorname{Span}\left(z_{1}\right)$;
2. Then, compute $\widehat{x_{2}}$ as a linear combination of $\hat{x_{1}}$ and z_{2}.

3. Kalman estimates

- If $\widehat{x_{1}}=K_{1} z_{1}$ is the orthogonal projection of x onto the vector z_{1}, then

$$
K_{1}=\frac{x \cdot z_{1}}{\left\|z_{1}\right\|^{2}}=\frac{x \cdot\left(x+v_{1}\right)}{\left\|x+v_{1}\right\|^{2}}=\frac{\|x\|^{2}+x \cdot v_{1}}{\|x\|^{2}+\left\|v_{1}\right\|^{2}}=\frac{P_{0}}{P_{0}+R}
$$

since x and v_{1} are orthogonal.

- The variance of $\widehat{x_{1}}$ is

$$
\left\|\widehat{x_{1}}\right\|^{2}=\left\|K_{1} z_{1}\right\|^{2}=\left(K_{1}\right)^{2}\left(P_{0}+R\right)^{2}=K_{1} P_{0}
$$

- Now, what Welch and Bishop[1] denote by P_{1} is

$$
\begin{aligned}
\left\|x-\widehat{x_{1}}\right\|^{2} & =\|x\|^{2}-\left\|\widehat{x_{1}}\right\|^{2} \\
& =P_{0}-K_{1} P_{0} \\
& =\left(1-K_{1}\right) P_{0}
\end{aligned}
$$

by the Pythagorean theorem.

- $z_{2}-\widehat{x_{1}}$ and z_{1} are orthogonal since their dot product is

$$
\begin{aligned}
\left(z_{2}-\widehat{x_{1}}\right) \cdot z_{1} & =\left(v_{2}+x-\widehat{x_{1}}\right) \cdot\left(v_{1}+x\right) \\
& =v_{2} \cdot\left(v_{1}+x\right)+\left(x-\widehat{x_{1}}\right) \cdot v_{1}+\left(x-\widehat{x_{1}}\right) \cdot x \\
& =0+0+0 .
\end{aligned}
$$

Thus, $z_{2}-\widehat{x_{1}}$ and z_{1} form an orthogonal basis in the plane spanned by z_{1} and z_{2}.

- Therefore, the projection of x on $\operatorname{span}\left(z_{1}, z_{2}\right)$ is the sum of the projections on z_{1} and $z_{2}-\widehat{x_{1}}$:

$$
\widehat{x_{2}}=\widehat{x_{1}}+K_{2}\left(z_{2}-\widehat{x_{1}}\right),
$$

where

$$
\begin{aligned}
K_{2} & =\frac{x \cdot\left(z_{2}-\widehat{x_{1}}\right)}{\left\|z_{2}-\widehat{x_{1}}\right\|^{2}} \\
& =\frac{\left(x-\widehat{x_{1}}\right) \cdot\left(z_{2}-\widehat{x_{1}}\right)}{\left\|x-\widehat{x_{1}}+v_{2}\right\|^{2}} \\
& =\frac{\left\|x-\widehat{x_{1}}\right\|^{2}}{\left\|x-\widehat{x_{1}}\right\|^{2}+R} \\
& =\frac{P_{1}}{P_{1}+R}
\end{aligned}
$$

- The variance of $K_{2}\left(z_{2}-\widehat{x_{1}}\right)$ is

$$
\begin{aligned}
\left\|K_{2}\left(z_{2}-\widehat{x_{1}}\right)\right\|^{2} & =\left(K_{2}\right)^{2}\left\|z_{2}-\widehat{x_{1}}\right\|^{2} \\
& =K_{2} \frac{P_{1}}{\left(P_{1}+R\right)}\left(P_{1}+R\right) .
\end{aligned}
$$

- What Welch and Bishop would denote by P_{2} is

$$
\begin{aligned}
\left\|x-\widehat{x_{2}}\right\|^{2} & =\left\|x-\widehat{x_{1}}\right\|^{2}-\left\|K_{2}\left(z_{2}-\widehat{x_{1}}\right)\right\|^{2} \\
& =P_{1}-K_{2} P_{1} \\
& =\left(1-K_{2}\right) P_{1}
\end{aligned}
$$

by the Pythagorean theorem. See the illustration.

References

[1] Welch \& Bishop, An Introduction to Kalman Filter, TR-95-041
[2] Bernt Oksendal, Stochastic Differential Equations, 5th ed.

