VISUALIZATION OF KALMAN STEPS

EUGENE YABLONSKI

The applet visualizes the first two steps of a simple Kalman filter. We follow the notations and terminology from the Welch & Bishop's paper [1].

1. Estimating a random constant

Let x and v_1, v_2 be independent *centered* random variables with finite 2nd moments:

$$P_0 = Ex^2;$$

 $R = E(v_1)^2 = E(v_2)^2.$

Let $z_1 = x + v_1$ and $z_2 = x + v_2$.

We interpret z_1 and z_2 as noisy measurements of x.

Problem. Given z_1 and z_2 , find the best linear estimate $\hat{x} = c_1 z_1 + c_2 z_2$ of x in the sense that $E(x - \hat{x})^2$ is as small as possible.

Moreover, perform this task recursively:

- 1. First, approximate x by a multiple of z_1 ; that would produce an estimate $\hat{x_1} = Kz_1$ for some K;
- 2. Then, determine \hat{x} as a linear combination of \hat{x}_1 and z_2 .

2. Geometric Interpretation of the problem

- The space $Span(x, z_1, z_2) = \{c_0x + c_1z_1 + c_2z_2 | c_i \in \mathbb{R}\}$ with the scalar product $u \cdot v = E(uv)$ is a Euclidean space.
- Consider the norm $||u|| = \sqrt{u \cdot u}$. In our notations:

$$||x||^2 = P_0;$$

 $v_1||^2 = ||v_2||^2 = R.$

Problem. Find the orthogonal projection \hat{x}_2 of the variable x onto the subspace $Span(z_1, z_2) = \{c_1z_1 + c_2z_2 | c_i \in \mathbb{R}\}.$

Specifically, implement this as a recursive procedure:

- 1. First find the projection $\widehat{x_1}$ of x onto $Span(z_1)$;
- 2. Then, compute $\widehat{x_2}$ as a linear combination of $\widehat{x_1}$ and z_2 .

3. KALMAN ESTIMATES

• If $\widehat{x_1} = K_1 z_1$ is the orthogonal projection of x onto the vector z_1 , then

$$K_1 = \frac{x \cdot z_1}{||z_1||^2} = \frac{x \cdot (x + v_1)}{||x + v_1||^2} = \frac{||x||^2 + x \cdot v_1}{||x||^2 + ||v_1||^2} = \frac{P_0}{P_0 + R_0}$$

since x and v_1 are orthogonal.

• The variance of $\widehat{x_1}$ is

$$||\widehat{x_1}||^2 = ||K_1z_1||^2 = (K_1)^2 (P_0 + R)^2 = K_1P_0.$$

• Now, what Welch and Bishop[1] denote by P_1 is

$$||x - \widehat{x_1}||^2 = ||x||^2 - ||\widehat{x_1}||^2$$
$$= P_0 - K_1 P_0$$
$$= (1 - K_1) P_0$$

by the Pythagorean theorem.

• $z_2 - \widehat{x_1}$ and z_1 are orthogonal since their dot product is

$$(z_2 - \widehat{x_1}) \cdot z_1 = (v_2 + x - \widehat{x_1}) \cdot (v_1 + x)$$

= $v_2 \cdot (v_1 + x) + (x - \widehat{x_1}) \cdot v_1 + (x - \widehat{x_1}) \cdot x$
= $0 + 0 + 0$.

Thus, $z_2 - \widehat{x_1}$ and z_1 form an orthogonal basis in the plane spanned by z_1 and z_2 .

• Therefore, the projection of x on $span(z_1, z_2)$ is the sum of the projections on z_1 and $z_2 - \widehat{x_1}$:

$$\widehat{x_2} = \widehat{x_1} + K_2 \left(z_2 - \widehat{x_1} \right),$$

where

$$K_{2} = \frac{x \cdot (z_{2} - \widehat{x_{1}})}{||z_{2} - \widehat{x_{1}}||^{2}}$$

= $\frac{(x - \widehat{x_{1}}) \cdot (z_{2} - \widehat{x_{1}})}{||x - \widehat{x_{1}} + v_{2}||^{2}}$
= $\frac{||x - \widehat{x_{1}}||^{2}}{||x - \widehat{x_{1}}||^{2} + R}$
= $\frac{P_{1}}{P_{1} + R}$

• The variance of $K_2(z_2 - \widehat{x_1})$ is

$$||K_{2}(z_{2} - \widehat{x_{1}})||^{2} = (K_{2})^{2} ||z_{2} - \widehat{x_{1}}||^{2}$$
$$= K_{2} \frac{P_{1}}{(P_{1} + R)} (P_{1} + R).$$

• What Welch and Bishop would denote by P_2 is

$$||x - \widehat{x_2}||^2 = ||x - \widehat{x_1}||^2 - ||K_2(z_2 - \widehat{x_1})||^2$$
$$= P_1 - K_2 P_1$$
$$= (1 - K_2) P_1$$

by the Pythagorean theorem. See the illustration.

References

[1] Welch & Bishop, An Introduction to Kalman Filter, TR-95-041

[2] Bernt Oksendal, Stochastic Differential Equations, 5th ed.