Geogebra

Set up the View with Algebra，Spreadsheet，and Input Bar （include Graphics too if desired）．

Enter functions $\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x})$ ，etc．in the Input Bar．
Enter x－values in column A of the spreadsheet．Use Fill Down to create a sequence of values．（Highlight two cells which define a first value and an increment，then drag the box to the target cells．）

In cell B1 of the spreadsheet，enter f（A1）．Highlight this cell

－Algebra	－Spreadsheet			
－Function	f_{x}	B I	目目圂	\square
－ $\mathbf{f (x)}=2 \mathrm{x}$		A	B	C
－ $\mathrm{g}(\mathrm{x})=2^{\mathrm{x}}$	1	1	$\mathrm{f}(\mathrm{A} 1)$	
	2	2		
	3	3		
	4	4		
	5	5		

Input：

Repeat：in cell C1，enter $\mathbf{g}(\mathbf{A} 1)$ and fill down．

Dynamic Tables option 1

To view the y－values one at a time，Fill Down one at a time．

Dynamic Tables option 2

To enter x－values one at a time，enter an x－value．Highlight both cells for the y－values，and Fill Down together．

Notes：

－To use row 1 as a＂header＂row，type＂ X ＂and＂ $\mathrm{f}(\mathrm{x})$＂with quotations in cells $\mathrm{A} 1, \mathrm{~B} 1$ ，etc．
－To guarantee a fraction output，enter this command in the top cell：fractiontext（f（A1））
－Geogebra calculates in radians，so for $f(x)=\sin (x)$ and other trig functions，enter this in the top cell： $\mathbf{f}\left(\mathbf{A 1} \mathbf{1}^{*} \pi / \mathbf{1 8 0}\right)$ ．The pi symbol is available on the Keyboard．

A blank GeoGebra applet for Table Techniques is at https：／／ggbm．at／uw5bqe6g

Growth Investigation: Linear Vs. Exponential

Table Techniques

7	Some values for the functions \mathbf{f} and \mathbf{g} are shown in the table. One of the functions is linear. The other is exponential.		X	f	g
			0	2	2
			1	12	20
			2	22	200
	Use the patterns to complete the missing entries.		3	32	
	How does the Y -value change for each?		4		
	Which function increases faster?		5		200000
			6	62	
	Can you find an equation for each column? 7				
8	Which scenario grows faster?				
	A. You start with $\$ 110$ savings and add $\$ 10$ each week.	B. You start with $\$ 5$ savings. Each week's total is double the amount you had the previous week.			
	Write an equation for each and enter them in the input bar.				
	In the table, enter the desired X-value. Then highlight both of the Y-value cells together and FILL DOWN to display both Y-values at the same time.				
	How much money do you have after 1 week in each scenario? In 4 weeks?				
	When does scenario B catch up with scenario A ?				
9	A. You have a population of 100 guppies, which increases by 25 guppies each year.	B. You have a population of 60 frogs, which increases by 25% each year.			
	Write an equation for each.				
	How many of each will there be in 3 years?				
	When do the frogs outnumber the guppies?				
10	Job A. Salary of $\$ 25,000$ with a 15% raise each year.	Job B. Salary of \$25,000 with a \$5000 raise each year.			
	Write an equation for each.				
	When will Job A have a higher salary than Job B?				
	Which would you rather have and why?				

