
ar
X

iv
:1

30
2.

52
44

v4
  [

m
at

h.
O

C
] 

 2
3 

D
ec

 2
01

9

The Fermat-Torricelli Problem and Weiszfeld’s Algorithm in the Light of

Convex Analysis

Boris S. Mordukhovich1, Nguyen Mau Nam2

Dedicated to Christiane Tammer with great respect

Abstract. In the early 17th century, Pierre de Fermat proposed the following problem: given three

points in the plane, find a point such that the sum of its Euclidean distances to the three given points

is minimal. This problem was solved by Evangelista Torricelli and was named the Fermat-Torricelli

problem. A more general version of the Fermat-Torricelli problem asks for a point that minimizes

the sum of the distances to a finite number of given points in R
n. This is one of the main problems

in location science. In this paper we revisit the Fermat-Torricelli problem from both theoretical and

numerical viewpoints using some ingredients of convex analysis and optimization.
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1 Introduction

The Fermat-Torricelli problem asks for a point that minimizes the sum of the distances

to three given points in the plane. This problem was proposed by Fermat and solved by

Torricelli. Torricelli’s solution states as follows: if one of the angles of the triangle formed

by the three given points is greater than or equal to 120◦, the corresponding vertex is the

solution of the problem. Otherwise, the solution is a unique point inside of the triangle

formed by the three points such that each side is seen at an angle of 120◦. The first

numerical algorithm for solving the general Fermat-Torricelli problem was introduced by

Weiszfeld in 1937 [22]. The assumptions that guarantee the convergence along with the

proof were given by Kuhn in 1972. Kuhn also pointed out an example in which Weiszfeld’s

algorithm fails to converge; see [11]. The Fermat-Torricelli problem has attracted great

attention from many researchers not only because of its mathematical beauty, but also

because of its important applications to the field of facility location. Many generalized

versions of the Fermat-Torricelli and several new algorithms have been introduced to deal

with generalized Fermat-Torricelli problems as well as to improve Weiszfeld’s algorithm; see,

e.g., [2, 4, 12, 13, 14, 15, 20, 21]. The problem has also been revisited several times from

different viewpoints as in [5, 6, 17, 23] and the references therein. Among many researchers

working on the field of facility location, Christiane Tammer is one of the pioneers with

important contributions to the theory, algorithms, and software for solving facility location

problems; see [1, 9, 10, 16] and their bibliographies.
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The main goal of this paper is to provide easy access to the problem from both theoretical

and numerical aspects by using some tools of convex analysis. These tools are presented in

the paper with simple proofs that are understandable for students with basic background

in introduction to elementary analysis.

The paper is organized as follows. In Section 2 we establish the existence and uniqueness

of the optimal solution for the Fermat-Torricelli problem generated by a finite number of

points. We also present proofs of some properties of the optimal solution and derive its

explicit representations for the case of three points using the convex subdifferential. Various

advantages of employing convex analysis when solving the Fermat-Torricelli problem has

been revealed in [8, 12, 13, 19]. Section 3 is devoted to revisiting Kuhn’s proof of the

convergence of Weiszfeld’s algorithm. In this section we mainly follow the line of proving

the convergence given by Kuhn [11], while with involving new ingredients from convex

analysis to replace some technical tools in order to make the proof more clear.

Throughout the paper the symbol B denotes the closed unit ball of Rn, and B(x̄; r) stands

for the closed ball centered at x̄ with radius r.

2 Elements of Convex Analysis and Properties of Solutions

In this section we review several important concepts of convex analysis to study the classical

Fermat-Torricelli problem as well as its general version mentioned in Section 1. Then we

present elementary proofs for some properties of optimal solutions of the problem. More

details of convex analysis can be found in the fundamental monograph [18].

Let ‖ · ‖ be the Euclidean norm in R
n. Given a finite number of distinct points ai for

i = 1, . . . ,m in R
n, define the function

ϕ(x) :=

m
∑

i=1

‖x− ai‖. (2.1)

The mathematical model of the Fermat-Torricelli problem is as follows:

minimize ϕ(x) subject to x ∈ R
n. (2.2)

The weighted version of this problem can be formulated and treated by a similar way.

Let f : Rn → R be a real-valued function. The epigraph of f is a subset of Rn × R defined

by

epi f :=
{

(x, α) ∈ R
n+1

∣

∣ x ∈ R
n and α ≥ f(x)

}

.

The function f is called convex if we have the inequality

f
(

λx+ (1− λ)y
)

≤ λf(x) + (1− λ)f(y) for all x, y ∈ R
n and λ ∈ (0, 1).

If this equality becomes strict for x 6= y, we say that f is strictly convex. It is easy to check

by the definitions that f is a convex function on R
n if and only if its epigraph is a convex

set in R
n+1. We obviously have that the function ϕ from (2.1) is convex on R

n.
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Proposition 2.1 Let f : Rn → R be a convex function. Then f has a local minimum at x̄

if and only if f has an absolute/global minimum at this point.

Proof: We only need to prove the “only if” implication since the converse is trivial. Suppose

that f has a local minimum at x̄. Then there exists a number δ > 0 with

f(u) ≥ f(x̄) for all u ∈ B(x̄; δ).

For any x ∈ R it follows that xk :=
(

1−
1

k

)

x̄+
1

k
x→ x̄ as k → ∞. Thus we get xk ∈ B(x̄; δ)

when k is sufficiently large. It follows furthermore that

f(x̄) ≤ f(xk) ≤
(

1−
1

k

)

f(x̄) +
1

k
f(x),

which implies in turn that
1

k
f(x̄) ≤

1

k
f(x),

and hence f(x̄) ≤ f(x). It shows that f achieves an absolute minimum at x̄. �

Proposition 2.2 The solution set of the Fermat-Torricelli problem (2.2) is nonempty.

Proof: Let m := inf{ϕ(x) | x ∈ R
n} ≥ 0, and let (xk) be a sequence satisfying

lim
k→∞

ϕ(xk) = m.

It follows from the definition that there exists k0 ∈ N with

‖xk − a1‖ ≤ ϕ(xk) ≤ m+ 1 for all k ≥ k0,

which implies that ‖xk‖ ≤ m+ 1+ ‖a1‖ for such k. Thus {xk} is a bounded sequence, and

so it has a subsequence {xkℓ} that converges to x̄ ∈ R
n as ℓ → ∞. Since ϕ is obviously

continuous, we get

ϕ(x̄) = lim
ℓ→∞

ϕ(xkℓ) = m.

This shows that x̄ is an optimal solution of the problem. �

For two different points a, b ∈ R
n, the line containing a and b is given by

L(a, b) :=
{

ta+ (1− t)b
∣

∣ t ∈ R
}

.

Proposition 2.3 Suppose that the points ai for i = 1, . . . ,m do not lie on the same line

(i.e., not collinear). Then the function ϕ defined by (2.1) is strictly convex, and the Fermat-

Torricelli problem (2.2) has a unique solution.

Proof: Define ϕi(x) := ‖x − ai‖ for i = 1, . . . ,m. Then ϕ =
∑m

i=1
ϕi. For any x, y ∈ R

n

and λ ∈ (0, 1) we have the inequality

ϕi

(

λx+ (1− λ)y
)

≤ λϕi(x) + (1− λ)ϕi(y) for i = 1, . . . ,m.
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This readily implies that

ϕ
(

λx+ (1− λ)y
)

≤ λϕ(x) + (1− λ)ϕ(y). (2.3)

On the contrary, suppose that ϕ is not strictly convex. It means that there exist x̄, ȳ ∈ R
n

with x̄ 6= ȳ and λ ∈ (0, 1) for which (2.3) holds as equality. Then

ϕi

(

λx̄+ (1− λ)ȳ
)

= λϕi(x̄) + (1− λ)ϕi(ȳ) for i = 1, . . . ,m,

which can be rewritten as

‖λ(x̄− ai) + (1− λ)(ȳ − ai)‖ = ‖λ(x̄− ai)‖+ ‖(1− λ)(ȳ − ai)‖ for i = 1, . . . ,m.

If x̄ 6= ai and ȳ 6= ai, then there exists ti > 0 such that

tiλ(x̄− ai) = (1− λ)(ȳ − ai).

This tells us that x̄− ai = γi(ȳ− ai), where γi :=
1− λ

tiλ
. Since x̄ 6= ȳ, we obtain γi 6= 1 and

ai =
1

1− γi
x̄−

γi
1− γi

ȳ ∈ L(x̄, ȳ).

In the case where either x̄ = ai or ȳ = ai, it is obvious that ai ∈ L(x̄, ȳ). Thus we arrive at

ai ∈ L(x̄, ȳ) for i = 1, . . . ,m, which is a contradiction that completes the proof. �

Recall that a vector v ∈ R
n is a subgradient of a convex function f : Rn → R at the given

point x̄ ∈ R
n if it satisfies the inequality

f(x) ≥ f(x̄) + 〈v, x− x̄〉 for all x ∈ R
n, (2.4)

where 〈·, ·〉 stands for the usual scalar product in R
n. The set of all subgradients of f at x̄

is called the subdifferential of this function at x̄ and is denoted by ∂f(x̄).

Directly from the definition, we deduce the following subdifferential Fermat rule:

f achieves an absolute minimum at x̄ if and only if 0 ∈ ∂f(x̄). (2.5)

The proposition below shows that the subdifferential of a convex function at a given point

reduces to the gradient at that point when the function is differentiable.

Proposition 2.4 Suppose that f : Rn → R is convex and (Fréchet) differentiable at x̄.

Then

〈∇f(x̄), x− x̄〉 ≤ f(x)− f(x̄) for all x ∈ R
n. (2.6)

Furthermore, we have ∂f(x̄) = {∇f(x̄)}.

Proof: Since f is differentiable at x̄, it follows from the definition that for any ε > 0 there

exists δ > 0 such that

−ε‖x− x̄‖ ≤ f(x)− f(x̄)− 〈∇f(x̄), x− x̄〉 ≤ ε‖x− x̄‖ whenever ‖x− x̄‖ < δ.
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Consider further the function

ψ(x) := f(x)− f(x̄)− 〈∇f(x̄), x− x̄〉+ ε‖x− x̄‖,

which satisfies ψ(x) ≥ ψ(x̄) = 0 for all x ∈ B(x̄; δ). By the convexity of ψ we have

ψ(x) ≥ ψ(x̄) whenever x ∈ R
n. Hence

〈∇f(x̄), x− x̄〉 ≤ f(x)− f(x̄) + ε‖x− x̄‖ for all x ∈ R
n.

Letting now ε ↓ 0 justifies the estimate in (2.6).

Equality (2.6) yields ∇f(x̄) ∈ ∂f(x̄). Taking any v ∈ ∂f(x̄), we get by definition that

〈v, x− x̄〉 ≤ f(x)− f(x̄) for all x ∈ R
n.

The differentiability of f at x̄ also implies that for any ε > 0 there exists δ > 0 such that

〈v −∇f(x̄), x− x̄〉 ≤ ε‖x− x̄‖ whenever ‖x− x̄‖ < δ.

Thus we have ‖v − ∇f(x̄)‖ ≤ ε, which shows that v = ∇f(x̄) since ε > 0 was chosen

arbitrarily. It verifies that ∂f(x̄) = {∇f(x̄)} and thus completes the proof of the proposition.

�

The subdifferential formula for the norm function derived in the next example plays a crucial

role in our subsequent analysis to solve the Fermat-Torricelli problem.

Example 2.5 Let p(x) := ‖x‖, the Euclidean norm function on R
n. Then we have

∂p(x) =







B if x = 0,
{ x

‖x‖

}

otherwise.

Since the function p(·) is differentiable with ∇p(x) = x/‖x‖ for x 6= 0, it suffices to verify

the claimed formula for x = 0. It follows from (2.4) that v ∈ ∂p(0) if and only if

〈v, x〉 = 〈v, x− 0〉 ≤ p(x)− p(0) = ‖x‖ for all x ∈ R
n.

Letting x := v, we get 〈v, v〉 ≤ ‖v‖, which implies that ‖v‖ ≤ 1, i.e., v ∈ B. Conversely, for

v ∈ B the Cauchy-Schwarz inequality tells us that

〈v, x− 0〉 = 〈v, x〉 ≤ ‖v‖ · ‖x‖ ≤ ‖x‖ = p(x)− p(0) whenever x ∈ R
n,

and hence v ∈ ∂p(0). Thus we arrive at ∂p(0) = B.

Solving the Fermat-Torricelli problem involves the usage of the following subdifferential rule

for sums of two convex functions one of which is differentiable while the other may be not.

Proposition 2.6 Let fi : R
n → R, i = 1, 2, be two convex functions such that f2 is differ-

entiable at x̄. Then we have the equality

∂(f1 + f2)(x̄) = ∂f1(x̄) +∇f2(x̄). (2.7)
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Proof: Fix any v ∈ ∂(f1 + f2)(x̄) and get for each x ∈ R
n that

〈v, x− x̄〉 ≤ f1(x)− f1(x̄) + f2(x)− f2(x̄) = f1(x)− f1(x̄) + 〈∇f2(x̄), x− x̄〉+ o(‖x− x̄‖).

For any ε > 0 there exists δ > 0 such that

0 ≤ 〈∇f2(x̄)− v, x− x̄〉+ f1(x)− f1(x̄) + ε‖x− x̄‖ whenever x ∈ B(x̄; δ).

The convexity of f1 ensures that the latter holds for all x ∈ R
n. Letting ε ↓ 0 yields

0 ≤ 〈∇f2(x̄)− v, x− x̄〉+ f1(x)− f1(x̄) whenever x ∈ R
n.

By (2.4) it tells us that v−∇f2(x̄) ∈ ∂f1(x̄) and hence v ∈ ∂f1(x̄)+∇f2(x̄), which justifies

the inclusion “⊂” in (2.7). Representing f1 = f1 + f2 + (−f2) and applying the obtained

inclusion, we have the relationships

∂f1(x̄) ⊂ ∂(f1 + f2)(x̄) +∇(−f2)(x̄) = ∂(f1 + f2)(x̄)−∇f2(x̄),

which verify the opposite inclusion “⊃” in (2.7) and thus complete the proof. �

Let us now use subgradients of the norm function to obtain the classical solution of the

Fermat-Torricelli problem. Given two nonzero vectors u, v ∈ R
n, denote

cos(u, v) :=
〈u, v〉

‖u‖ · ‖v‖
.

Fix x̄ 6= ai and define the unit vectors

vi :=
x̄− ai
‖x̄− ai‖

, i = 1, 2, 3.

Each vi is the unit vector pointing in the direction from the vertex ai to x̄. Observe that the

Fermat-Torricelli problem formulated above always has a unique solution even if the three

given points are on the same line. It is easy to see in the latter case that the middle point is

the solution of the problem. The next proposition completely characterizes the solution of

the Fermat-Torricelli problem in the general three-point setting of the n-dimensional space,

not just on the plane as in the original framework.

Proposition 2.7 Let the points a1, a2, a3 ∈ R
n generate the Fermat-Torricelli problem in

R
n. Then we have the following descriptions of the optimal solution to (2.2) with ϕ taken

from (2.1):

(i) In the case where x̄ /∈ {a1, a2, a3}, x̄ is the solution of the problem if and only if

cos(v1, v2) = cos(v2, v3) = cos(v3, v1) = −1/2.

(ii) Consider the case where x̄ ∈ {a1, a2, a3} and suppose for definiteness that x̄ = a1. Then

x̄ is the solution of the problem if and only if

cos〈v2, v3〉 ≤ −1/2.
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Proof: In case (i) we have that the function ϕ from (2.1) is differentiable at x̄. Since ϕ is

convex, x̄ is the solution to the Fermat-Torricelli problem if and only if

∇ϕ(x̄) = v1 + v2 + v3 = 0.

Remembering that ‖vi‖ = 1 for i = 1, 2, 3, we get

〈v1, v2〉+ 〈v1, v3〉 = −1

〈v2, v1〉+ 〈v2, v3〉 = −1

〈v3, v1〉+ 〈v3, v2〉 = −1.

Solving this system of equations yields

〈vi, vj〉 = cos(vi, vj) = −1/2 for i 6= j, i, j ∈ {1, 2, 3}.

If furthermore 〈vi, vj〉 = −1/2 for i 6= j, i, j ∈ {1, 2, 3}, then

‖v1 + v2 + v3‖
2 =

3
∑

i=1

‖vi‖+
3

∑

i,j=1,i 6=j

〈vi, vj〉 = 0,

which gives us v1 + v2 + v3 = 0 and thus completes the proof in the case.

In case (ii) we deduce from the subdifferential Fermat rule (2.5) and the subdifferential sum

rule (2.7) that x̄ = a1 is the solution to the Fermat-Torricelli problem if and only if

0 ∈ ∂ϕ(a1) = B+ v2 + v3.

This is equivalent to ‖v2 + v3‖
2 ≤ 1 or, equivalently, to ‖v2‖

2 + ‖v3‖
2 +2〈v2, v3〉 ≤ 1. Since

v2 and v3 are unit vectors, we obtain

〈v2, v3〉 = cos(v2, v3) ≤ −1/2

and complete the proof of the proposition. �

Next we present an example with a figure illustrating the obtained solution in the classical

case of three points on the plane.

Example 2.8 Consider the Fermat-Torricelli problem given by three points A, B, and C

on the plane as shown in the figure. If one of the angles of the triangle ABC is greater

than or equal to 120◦, then the corresponding vertex is the solution to the problem by

Proposition 2.7(ii). Let us examine the case where none of the angles of the triangle is

greater than or equal to 120◦. Construct two equilateral triangles ABD and ACE and

let S be the intersection of DC and BE as in the figure. Two quadrilaterals ADBC and

ABCE are convex, and hence S lies inside the triangle ABC. It is clear that two triangles

DAC and BAE are congruent. A rotation of 60◦ about A maps the triangle DAC to the

triangle BAE. The rotation maps CD to BE, so ∠DSB = 60◦. Let T be the image of

S through this rotation. Then T belongs to BE. It follows that ∠AST = ∠ASE = 60◦.

Moreover, ∠DSA = 60◦, and hence ∠BSA = 120◦. It is now clear that ∠ASC = 120◦ and

∠BSC = 120◦. Proposition 2.7(i) tells us that the point S is the solution to this classical

Fermat-Torricelli problem.
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3 Weiszfeld’s Algorithm

In this section we revisit Kuhn’s proof [11] of the convergence of Weiszfeld’s algorithm [22]

for solving the Fermat-Torricelli problem (2.2). With some additional ingredients of convex

analysis we are able to provide a more clear picture of Kuhn’s proof. Throughout this

section, assume that the points ai for i = 1, . . . ,m are not collinear.

The gradient of the function ϕ from (2.1) is computed by

∇ϕ(x) =

m
∑

i=1

x− ai
‖x− ai‖

, x /∈
{

a1, a2, . . . , am
}

.

Solving the gradient equation ∇ϕ(x) = 0 gives us the formula

x =

m
∑

i=1

ai
‖x− ai‖

m
∑

i=1

1

‖x− ai‖

:= F (x). (3.8)

To keep the continuity, define F (x) := x for x ∈ {a1, a2, . . . , am}.

Weiszfeld introduced the following algorithm: choose a starting point x0 ∈ R
n and define

xk = F (xk−1) for k ∈ N.

He also claimed that if x0 /∈ {a1, a2, . . . , am} where ai for i = 1, . . . ,m are not collinear,

then {xk} converges to the unique optimal solution of the problem. A correct statement

and the proof of the convergence were given by Kuhn in [11].

The next proposition guarantees that the cost function value in (2.2) decreases after each

iteration of the Weiszfeld algorithm.

Proposition 3.1 If F (x) 6= x, then ϕ(F (x)) < ϕ(x).

8



Proof: It is clear that x is not a vertex, since otherwise we get F (x) = x. Moreover, the

point F (x) is the unique minimizer of the following strictly convex function:

g(z) :=

m
∑

i=1

‖z − ai‖
2

‖x− ai‖
.

Indeed, we can easily check that F (x) is the unique solution of the equation ∇g(z) = 0.

Using F (x) 6= x tells us that g(F (x)) < g(x) = ϕ(x). Furthermore, it clearly follows from

the constructions above that

g
(

F (x)
)

=

m
∑

i=1

‖F (x) − ai‖
2

‖x− ai‖

=

m
∑

i=1

(‖x− ai‖+ ‖F (x)− ai‖ − ‖x− ai‖)
2

‖x− ai‖

= ϕ(x) + 2
(

ϕ(F (x)) − ϕ(x)
)

+
m
∑

i=1

(‖F (x) − ai‖ − ‖x− ai‖)
2

‖x− ai‖
,

which verifies the strict inequality

2ϕ
(

F (x)
)

+
m
∑

i=1

(‖F (x)− ai‖ − ‖x− ai‖)
2

‖x− ai‖
< 2ϕ(x)

and hence yields the claimed decreasing property ϕ(F (x)) < ϕ(x). �

Now we investigate behavior of the algorithm mapping F near a vertex and deal with the

case where a vertex is not the solution of the Fermat-Torricelli problem (2.2). Let us first

present a necessary and sufficient condition for a vertex to be the optimal solution of the

problem. Define

Rj :=
m
∑

i=1,i 6=j

ai − aj
‖ai − aj‖

, j = 1, . . . ,m,

Proposition 3.2 The vertex aj is the optimal solution to (2.2) if and only if ‖Rj‖ ≤ 1.

Proof: Employing the subdifferential Fermat rule (2.5) and the subdifferential sum rule

from Proposition 2.6 ensures that the vertex aj is the optimal solution of the problem if

and only if

0 ∈ ∂ϕ(aj) = −Rj + B,

which can be equivalently rewritten as ‖Rj‖ ≤ 1. �

The obtained result allows us to significantly simplify the proof of the next proposition

taken from [11, Subsection 3.2].

Proposition 3.3 Suppose that the vertex aj is not the optimal solution to (2.2). Then

there is a number δ > 0 such that the condition 0 < ‖x − aj‖ ≤ δ yields the existence of a

positive integer q for which we have the estimates

‖F q(x)− aj‖ > δ and ‖F q−1(x)− aj‖ ≤ δ (3.9)

9



with using the notation

F q(x) := F
(

F q−1(x)
)

whenever q = 1, 2, . . . and F 0(x) := x. (3.10)

Proof: If x is not a vertex, then we get from (3.8) that

F (x) =

m
∑

i=1

ai
‖x− ai‖

m
∑

i=1

1

‖x− ai‖

.

which implies in turn that

F (x)− aj =

m
∑

i=1,i 6=j

ai − aj
‖x− ai‖

m
∑

i=1

1

‖x− ai‖

.

Taking now the limit as x→ aj leads us to

lim
x→aj

F (x)− aj
‖x− aj‖

= lim
x→aj

m
∑

i=1,i 6=j

ai − aj
‖x− ai‖

1 +

m
∑

i=1,i 6=j

‖x− aj‖

‖x− ai‖

= Rj.

This implies by Proposition 3.2 that

lim
x→aj

‖F (x)− aj‖

‖x− aj‖
= ‖Rj‖ > 1 (3.11)

and thus allows us to find positive numbers ε and δ with

‖F (x)− aj‖

‖x− aj‖
≥ (1 + ε) whenever 0 < ‖x− aj‖ ≤ δ. (3.12)

Remembering the notation in (3.10), if

0 < ‖F p−1(x)− aj‖ ≤ δ for all p = 1, . . . , q,

then by (3.12) we have

‖F q(x)− aj‖ ≥ (1 + ε)‖F q−1(x)− aj‖ ≥ . . . ≥ (1 + ε)q‖x− aj‖.

Taking into account that (1 + ε)q‖x − aj‖ → ∞ as q → ∞ verifies the estimates in (3.9)

and thus completes the proof of the proposition. �

We finally present the following simplified and improved proof (with taking into account

Propositions 3.2 and (3.3) above) of Kuhn’s convergence result [11] for Weiszfeld’s algorithm

to solve the Fermat-Torricelli problem.
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Theorem 3.4 Let {xk} be the sequence of iterates generated by Weiszfeld’s algorithm, and

let xk /∈ {a1, a2, . . . , am} for all k = 0, 1, . . .. Then {xk} converges to the optimal solution

x̄ of the Fermat-Torricelli problem (2.2).

Proof: Observe first that if xk = xk+1 for some k = k0, then xk is a constant sequence for

all k ≥ k0, which therefore converges to xk0 . Since F (xk0) = xk0 and xk0 is not a vertex,

the point xk0 is the solution of the problem. Hence we can proceed by assuming that

xk+1 6= xk for every k. Proposition 3.1 tells us that the sequence {ϕ(xk)} is nonnegative

and decreasing, and thus it converges, which means that

lim
k→∞

(

ϕ(xk)− ϕ(xk+1)
)

= 0. (3.13)

It follows from the algorithm that xk ∈ co {a1, a2, . . . , am} (the convex hull) for all k ≥ 1.

Since the latter set is compact in R
n, we have the convergence of some subsequence of {xk}.

Take a subsequence {xkℓ} of {xk} that converges to a point ȳ. It suffices to prove that

ȳ = x̄. To proceed, deduce from (3.13) that

lim
ℓ→∞

(

ϕ(xkℓ)− ϕ(F (xkℓ)
)

= 0

and conclude by the continuity of ϕ that ϕ(ȳ) = ϕ(F (ȳ)). This clearly yields F (ȳ) = ȳ.

If ȳ is not a vertex, then it is the solution of the problem, so ȳ = x̄. Let us consider the

case where ȳ is a vertex, say a1. Arguing by contradiction, suppose that ȳ 6= x̄. Choose

δ > 0 sufficiently small such that the properties in Proposition 3.3 hold, and that the ball

B(a1; δ) does not contain x̄ and ai for i = 2, . . . ,m. Since xkℓ → a1 = ȳ, we assume without

loss of generality that the sequence is contained in B(a1; δ).

For x = xk1 , choose q1 such that xq1 ∈ B(a1; δ) and F (xq1) /∈ B(a1; δ). Selecting further an

index kℓ > q1 and applying Proposition 3.3, we find q2 > q1 such that xq2 ∈ B(a1; δ) and

F (xq2) /∈ B(a1; δ). Repeating this procedure gives us a sequence {xqℓ} with xqℓ ∈ B(a1; δ)

and F (xqℓ) not belonging to the ball. Extracting yet another subsequence, suppose that

xqℓ → z̄. It follows from the above that F (z̄) = z̄. If z̄ is not a vertex, then it must be

the solution, which is a contradiction because the solution x̄ is not in B(a1; δ). Thus z̄ is a

vertex that should be a1, since the other vertices do not belong to the ball as well. It tells

us that

lim
ℓ→∞

‖F (xqℓ)− a1‖

‖xqℓ − a1‖
= ∞,

which contradicts Proposition 3.2 via (3.11) and thus completes the proof of the theorem.�
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minimum, Tôhoku Mathematics Journal 43 (1937), 355–386.

[23] E. Weiszfeld and F. Plastria, On the point for which the sum of the distances to n

given points is minimum. Ann Oper Res 167 (2009), 7–41.

13


	1 Introduction
	2 Elements of Convex Analysis and Properties of Solutions
	3 Weiszfeld's Algorithm

