## Circular motion and Complex Exponential (Eugene Yablonski)

## 1. CIRCULAR MOTION WITH CONSTANT SPEED

Exercise 1.1. Your boat makes a circle of radius $r=1 \mathrm{~km}$ at a constant angular speed $\omega=1^{\circ} / \mathrm{min}=\frac{\pi}{180}$ $\mathrm{rad} / \mathrm{min}$.

If your initial position $\boldsymbol{x}_{0}$ has polar coordinates $(1, \phi)$, what is your position at time $t$ ?

SOLUTION. By time $t$, you've traveled $\omega t$ rad. Let $A(\omega t)$ be the matrix of rotation by angle $\omega t$. Then your new position is

$$
\boldsymbol{x}(t)=A(\omega t) \mathbf{x}_{0}=\left[\begin{array}{c}
\cos (\omega t+\phi) \\
\sin (\omega t+\phi)
\end{array}\right] .
$$



Exercise 1.2. Describe the same movement on a complex plane.

ANSWER:

$$
z(t)=e^{i \omega t} z_{0}=e^{i(\omega t+\phi)} .
$$

Remark. Your velocity vector is

$$
\boldsymbol{z}^{\prime}(t)=\omega i \boldsymbol{z}(t)
$$

Multiplication by $i$ rotates $\boldsymbol{z}$ by $90^{\circ}$, so that the velocity vector $\boldsymbol{z}^{\prime}(t)$ is perpendicular to the current radius-vector $\boldsymbol{z}(t)$.

Your displacement over $\Delta t=1 \mathrm{~min}$ is

$$
\Delta z \approx \boldsymbol{z}^{\prime}(t) \Delta t=\omega i \boldsymbol{z}(t) 1
$$

that is you move about $\omega=\frac{\pi}{180} \mathrm{~km}$ in the direction $i z(t)$ tangent to the circle.

