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Taylor's theorem and Taylor series

In this section, we shall consider a polynomial approximation which mimics a function f near one
given point. We will seek coefficients agy, a1, - - , a, such that the polynomial

P.(z) =ao+ai(z —a) +ax(z—a)?+---+an(z —a)"+ R((z — a)"™)

approximates to f(x) near £ = a, where assuming that f(x) is nth differentiable at x = a.
Therefore f(x) ~ P, (), and we try to choose the coefficients an,n = 0,1,2,--- ,n.

The Taylor series of a real or complex-valued function f(x) that is infinitely differentiable at a real or
complex number a is the power series
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where n! denotes the factorial of . and £ (a) denotes the nth derivative of f evaluated at the

point a. In the more compact sigma notation, this can be written as
S (o z —ay",

The derivative of order zero of f is defined to be f itself and (z—a)? and 0! are both defined to be
1. When a = 0, the series is also called a [Maclaurin series][2].

For instance:

The Taylor series for the exponential function e ata = O is
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The above expansion holds because the derivative of € with respect to x is also e® and el equals
1. This leaves the terms (z—0)" in the numerator and n! in the denominator for each term in the

infinite sum.

Euler formula: € = cos(z) + i sin(x)

The Taylor series of function €* ata = 0 is
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https://en.wikipedia.org/wiki/Taylor_series
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Let 2 = 4, where § is imaginary unit, which satisfied i = 1,3%+1 = §, §4%+2 — _1 443 —
—1.
left side means €' = COS( ) +1 sin(a:)
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The above sums are the taylor series sum for function cos(z) and sin(z). (they have the following

Colin Maclaurin series, for all x)
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B/, cos(z) BBEE, sin(x) 2EFHRE.

Of course, we can use Taylor expansion to get the above formula.

sin*) (z) = 4% sin(z) _ (—1)* sin(z)

dz
sin* ) () = (—1)* cos(z)
The even-th derivative function of sin(x) at z = 0 equals to 0, and odd-th derivative function of

sin(z) at z = 0 equals to (—1)*

Polynomial approximation theorem

Question: How to solve the quation sin(z) = 0?

1. First, sin(z) = 0 has the solution {kmw, k =0,+1,4+2,--- .}


https://en.wikipedia.org/wiki/Colin_Maclaurin

2. According to the fundamental theorem of algebra (polynomial approximation theorem) , Let's
suppose sin(z) is a polynomial.

sin(z) = ¢ * H(knr —z)(km + z)z
k=1
sinafzc) =c* ﬁ(kﬂ' —z)(km + x)

Now limit at x tends to O, we shall get
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Letx = 5, we get
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see also John Wallis' product for

Similarly, we can get
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Euler identity


https://en.wikipedia.org/wiki/Wallis_product

1. From Taylor expansion, we get
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2. From polynom|al apprommation theorem and equation solution, we get
sm-wﬂ

3. Compare the degree 3 of x-term, we get the coefficients shoulb be equivalent.
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Gregory-Leibniz series

The series for the inverse tangent function, which is also known as Gregory's series, can be given
by:
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The Leibniz formula for 1 can be obtained by putting z = 1 (T’TODO?) into the above inverse-

tangent series.
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As you can see, this converges very slowly(UZEIHRIE! AJHY), with large, alternating over-estimates
and under-estimates.

Nilakantha Series

This is the faster convergent method for pi.
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Viete's Formula

Viete's formula is the following infinite product of nested radicals representing the mathematical

constant m:
2 V2 V2442 V2+ V212
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It is named after Francois Viéte (1540-1603), who published it in 1593.

Viete's formula may be rewritten and understood as a limit expression.
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where a, = 1/2 + an,_1, with initial condition a1 = \/§

Viete's formula may be obtained as a special case of a formula given more than a century later by
Leonhard Euler, who discovered that:

sin T T T

= COS = - COS — - COS — * -+
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Substituting

s
T = 5 in this formula yields:
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— = COS— -COS — *COS — **
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Then, expressing each term of the product on the right as a function of earlier terms using the half-

angle formula:

T 1+ cosx
cos - =14/ ————
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gives Viete's formula.



It is also possible to derive from Viéte's formula a related formula for 7 that still involves nested
square roots of two, but uses only one multiplication: ref Viete formula

= 1im2’“¢2¢2+\/2+\/2+\/2+---+\/§
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1. B NREOrderliB 5 n = slider(1,20,1)

2. BENEREIENEE, W f(x) = arctan(z), g(z) = sin(z), h(z) = cos(x), - - -
3. EAEE g = Taylor Polinomial(f,z(A),n), A= (0,0)

4. FARREEL FormulaText(g, true, true) BILARRREL

TaylorSeriesf9ZInz{1@1IMERGGB
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XEXEEIEA, BIENMHELERNGZE, SITEREEZR w jIE/M.
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Lon= /24— L2
BRERNFERr = 1, WBLE6IHFAGLK L = 1, FIFERXEXTLURERHEK
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1. FeEENERURELBEIS: n = slider(1,10,1)
2. BEIEREEY f(z) = sqrt(2 — sqrt(4 — zx))
3. RIS FAGGBRIIE S value = Tteration(f,1,n) — Ly, =
V2 — 4 — L, x Ly, Le = 1, {IHAEEIECHAAHOE.
4. TE2nBfOE B AR m = value x 6 x 27!

X—EERSIEARIR, [ESAANNEIAEESRIGK. 1] =6 x 27!




