
and the solution(s) will be

ψ1
b− b

2
4 a c−+

2 a
:= ψ2

b− b
2

4 a c−−
2 a

:=

depending on the discriminant D. We have three cases.

D 0> target can be hit, two angles

D b
2

4 a c−= D 0= target can just be hit, one angle

D 0< target cannot be hit

When there is a solution we use the "aim angle" θ in Eq(1): θ atan ψ( ):=

Next we have a plot of an example of this solution, for a general case, with a nonzero initial height. 
Note that there are two solutions, one downward (negative angle) and one upward. Clearly these will 
have different TOF's; the TOF is easily found, since we know the x-position of the target, and the x 
velocity is constant: 

T θ( ) X

v0 cos θ( ):= T θ( ) 0.208

1.096









= θ
180

π

16.054−

79.489









=

The parameters are: initial velocity 5 m/s; initial height, 2 m. The solution also works for zero initial height.

PROJECTILE MOTION Targeting

We seek to find a launch angle θ that will hit a target located at a given position (X,Y), for a given initial 
velocity. Begin with the Cartesian version of the parabolic trajectory (developed elsewhere):

y x( )
g−

2 v0 cos θ( )( )2
x
2

x tan θ( )+ y0+= (1)

which can be written as

Y
g−

2 v0
2

1 tan θ( )2
+( ) X

2
X tan θ( )+ y0+=

using the identity
1

cos θ( )2
1 tan θ( )2

+=

Since the unknown is the angle, define

ψ tan θ( )= and α
g−

2 v0
2

:=

then we have a quadratic in (a function of) the angle:

Y α 1 ψ
2

+( ) X
2

X ψ+ y0+= α X
2( ) ψ

2
X( ) ψ+ y0 Y− α X

2+



+ 0=

a α X
2:= b X:= c y0 Y− α X

2+:=

(c) W. C. Evans   2004 1



0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

Downrange, m

V
er

ti
ca

l, 
m

Of interest is the so-called "parabola of safety" which is an envelope of the points that can just be hit 
by a single angle. If a point is outside this envelope, it cannot be hit (and so is "safe"). Consider the 
discriminant when it is zero (single solution, i.e., a double root). Then we can write

b
2

4 a c= so that we have X
2

4 α X
2( ) y0 Y− α X

2+



=

which we want to solve for Y in terms of X, to see what form this envelope has. This is 

Y α X
2

y0+
1

4 α
−= Y

g−

2 v0
2

X
2

y0+
v0

2

2 g
+= (2)

Next are plots of this parabola (thick lines) with some example trajectories shown. Note that several are 
just tangent to the envelope, while others are entirely inside. The idea is that a point located outside this 
parabola cannot be hit by a projectile launched with the given initial velocity, no matter at what angle. 
This would be the case with, say, an antiaircraft gun (an artillery piece is correctly called a "gun") with a 
fixed muzzle velocity. Any target outside this parabola cannot be engaged.

Note that the envelope also works for a trajectory that starts at a nonzero initial height.
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In the first figure above one such point is illustrated by a box at the tangent for a trajectory.

Ytangent

v0
2

2 g
1

1

tan θ( )2
−








y0+=

To complete this, we use the x-tangent expression in Eq(2) to find the y-coordinate of the tangent point:

so the slopes are related as the negative reciprocal, which is the condition for being perpendicular. QED

dy

dx
x 0=( ) tan θ( )=

and we already know that the tangent of the initial angle θ is the slope of the initial velocity vector. We can 
also see this by evaluating the derivative of the trajectory Eq(1) at the origin (initial slope), which gives

dY

dX
X Xtangent=( ) g−

v0
2

v0
2

g tan θ( )=
1−

tan θ( )=

Next we evaluate the derivative of the envelope at this point, so

Xtangent

v0
2

g tan θ( )=then we haveb tan θ( )=a
g−

2 v0 cos θ( )( )2
=Now with 

Xtangent
b−

2 a
g

v0
2

+
=from which2 a Xtangent b+

g−

v0
2

Xtangent=

and the latter is equal to the derivative of the envelope, so

dy

dx
2a x b+=so thaty x( ) a x

2
b x+ c+=

and we need to evaluate this at the point of tangency with the trajectory. At this x-point the tangents 
(derivatives w.r.t. x) are equal. Writing the trajectory Eq(1) as a quadratic in the usual manner (re-using 
a,b,c) we have

dY

dX

g−

v0
2

X=

An interesting fact is that the velocity vector for a trajectory at the tangent point with the envelope is 
perpendicular to the initial velocity vector. We can show this by taking the derivative of the envelope, Eq(2):
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