SOME INTEGRAL-CALCULUS FACTOIDS

The basic rule for definite integrals, such asahes we need for “work” calculations, is
b
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whereF is the “antiderivative” of(x). Some of these are simple enough to remembegammhe

automatic with repeated use, but the best bet lsdk them up in tables. The basic ones are
given on the AP formula sheet. An example:
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A negative sign for the integral can be evaluatgdeversing the upper and lower limits; this is
sometimes easier, as here.

If there are quantities in the integrand that awé fanctions of the integration variable, those
guantities can be taken outside the integral:
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The mean or average value of a function over &efirmnge of the independent variable can be
found using the “mean-value theorem of integrataiais”
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A more general definition is, witlw(x) a “weight,”
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For example, find the average value f{k) = x* over 0< x < 2.
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Note that the TI calculators have a function fomewical integration. For this example it would
be fnInt(, x, 0, 2) This is useful for checking results.
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INTEGRALS OF MOTION: WORK

A force is applied to an object for a finite timedaover a finite displacement. This leads to adiwhange in the
velocity of the object. Note th& = ma by itself has no bounds and would result in anefinéd acceleration and
hence velocity. Thus we should integr&tever space or time. In one dimension, for clattys is

j:F(x)dx: AEK:%n(@— 9) 1)

or
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For the moment, all we need to get out of thesegiails is that a finite change in velocity is obél when we apply
a force for a finite time or across a finite disygement.

Integrating across displacement, Eq(1), resultssnalar quantity called “work.” In the most gehesse it is found
using thdine integralover some finite portion of a space (3D) cu@ze

w:J'F(r)-d 3)

but we will not need to evaluate these vector iragksgin this course. In this case the force may wamagnitude
and/or direction with position along the curve, dhdse curves can have all sorts of complicatedsi3pes. Note
that the integrand is a dot product, and the resfutis integration is a scalar, a single numkreisome problems,
Eq(3) can be adapted to find a solution withoutdhmplete line-integral formalism.

Many problems are in one dimension, and we carevargimpler but still useful version of the workeigral:

W = j " F(x) cos@, )dx @)

Here both the magnitude of the force and/or itedion 6, with respect to the single dimensigmay vary along
the path. As long as this variation can be defimadhematically, and is “integrable,” then we camdfthe work
done in applying this nonconstant force over< x < b. An example of this situation is pushing a lawnmom

one pass across a level yard. As the mower is pusio¢h the “amount” or “strength” of push and #regle of push
might vary across the path.

Another variation on Eq(3) is the case of a cortdtaae. Then we don't need the integral and caitewr
W =F-e«Ar (5)
This form is useful when the force is given(ifj k) format, as is the displacement. Note that thelaigmentAr is

now a finite difference, not a differential, aswas in Eq(3). For this equation we would use themonent-
multiplication method for the dot product evaluatio

An even simpler version, in one dimension with astant force, is

W = FAxcos@) (6)
and if the angle between the force and displaceisergro we have the standard “force times distaresult
W = FAX (7)
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WORK-ENERGY: PART |

Having calculated this quantity “work” we might waer of what use it is. The work integral, againane
dimension for clarity, is, with the understandihgttthe forcd- is the component along the displacement,

W:I;H@dx

but, using Newton’s Second Law, this can also higemras
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With a change of the variable of integration freno the velocity, we have
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where the quantity> mV is defined to be thkinetic energy Ex of the object. There are several ways to effést th
change of variable; the most common is the chda ru

Another way to look at it is to use the kinemaétation
2
v =+ 2a(x- %)
and then differentiate this implicitly with respeotx (nott). That will give
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which leads to the same result for the changeriatld energy that we found above. This math is oelgded in the
derivation of thevork-ener gy theorem; in practice all we need to know is

W = AE,

This says that a given amount of work done on gecblwill result in a certain change in the objedtinetic energy.

Both work and energy have units of joules (J), Wwhize N-m, kg-rfis>. This very simple relation allows easy
solutions for certain types of mechanics problepasticularly those that involve velocities. The wal can be
found using

w:IFm-d

or any of its simpler variations. In some casesplation using Newton’s Laws and kinematics woutdextremely
tedious, and perhaps not tractable at all, butgusiork-energy can lead to a straightforward sotutio

The concepts of work and energy do not appear intdigs Principia. These were later developments, and there
was scholarly disagreement about these ideas. thieiscase in other areas of physics besides meashaaig.,
thermodynamics, that the concept of “work” is udlgfthought of as @ransfer of energyln mechanics that transfer
of energy is via the application of a force. Howewee have not defined “energy.” That term somesinisedefined

as “the capacity to do work.” So we see that theefnitions are a bit circular. Nonetheless, thacapts of work
and energy are, without question, very useful.
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