FONCTION EXPONENTIELLE: ACTIVITÉ D'INTRODUCTION

On cherche les fonctions f telles que f'=f. On note (E) cette équation.

I. Fonctions polynômes

Certaines fonctions déjà étudiées sont-elles solutions ? On pense aux fonctions polynômes.

Or, si une fonction polynôme de degré $n \ (n>0)$ est solution de (E), alors sa fonction dérivée f' est de degré n-1. On ne peut donc pas avoir f'=f.

Si n=0: f est une fonction polynôme de degré 0, donc f(x)=k où $k \in \mathbb{R}$.

On a alors: f'(x)=0, et donc f est solution de (E) si, et seulement si, k=0.

Autrement dit, la seule fonction polynôme de degré 0 qui est solution de (E) est la fonction nulle.

Conclusion : hormis la fonction nulle, aucun polynôme n'est solution de (E).

II. Unicité d'une solution

S'il existe une fonction f non nulle solution de (E), alors il est facile de montrer que toute fonction g_k définie par $g_k(x)=k$ f(x) $(k \in \mathbb{R})$ vérifie également (E).

Autrement dit, s'il existe une solution non nulle, alors il existe une infinité de solutions.

III. Approximation d'une solution par la méthode d'Euler

On suppose qu'il existe une solution de (E), que l'on note f, et qui vérifie f(0)=1.

On note $M_0(x_0; y_0)$ où $x_0 = 0$ et $y_0 = f(x_0) = 1$.

Donc: $M_0(0;1)$.

On choisit un pas $h \neq 0$ (proche de 0).

On pose: $x_1 = x_0 + h$.

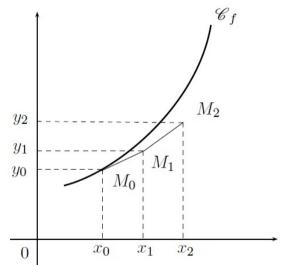
L'équation de la tangente à C_f au point M_0 est :

$$y = f'(x_0)(x - x_0) + f(x_0) \text{ ie } y = f(x_0)(x - x_0) + f(x_0).$$

Donc on approach $f(x_1)$ par l'image de x_1 sur cette tangente : $f(x_1) \approx f(x_0)(x_1-x_0)+f(x_0)$. Or, $x_1-x_0=h$ et $f(x_0)=y_0$

donc: $f(x_1) \approx y_0 h + y_0$ ie $f(x_1) \approx y_0 (h+1)$.

On note donc: $y_1 = y_0(h+1)$ et $M_1(x_1; y_1)$.



On recommence le procédé en posant $x_2=x_1+h$, et en approchant $f(x_2)$ par l'image de x_2 sur la tangente à C_f au point M_1 .

On trouve alors: $f(x_2) \approx f(x_1)(x_2 - x_1) + f(x_1)$ ie $f(x_2) \approx y_1(h+1)$ ie $f(x_2) \approx y_0(h+1)^2$.

Donc on pose: $y_2 = y_0(h+1)^2$ et $M_2(x_2; y_2)$.

Ainsi de suite, on construit une suite de points M_n de coordonnées $(x_n; y_n)$ tels que $x_n = x_0 + nh$ et $y_n = y_0 (h+1)^n$. Ces points approchent la courbe C_f solution du problème posé.

Plus h est proche de 0, plus la ligne polygonale $M_0M_1M_2...$ est proche de C_f .

