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We can plot the range as a function of its parameters but first we develop expressions for the maximum 
range, so that these can be indicated on the graphs. We seek the angle that will maximize the range, and 
then the range that results from a trajectory at that angle. To do this, we find the derivative of R as a 
function of the angle, set it to zero, and solve for the angle. This tedious work results in

which is just the initial velocity times the TOF for this case.

θ 0=R v0

2 y0

g
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If the initial angle is zero, then

θX
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This is the range for a given angle; to get a given range X, the angle needed is found by inverting, so that

y0 0=R
2 v0

2
sin θ( ) cos θ( )

g
=

v0
2

g
sin 2 θ( )=

In the special case of a zero initial height we have the usual textbook result

(1)R
v0

g
cos θ( ) v0 sin θ( ) v0 sin θ( )( )2

2 g y0++



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Thus we can write a general expression for the range:

T
1

g
v0 sin θ( ) v0 sin θ( )( )2

2 g y0++



=

The TOF has been developed elsewhere, and is

x T( ) R= v0 T cos θ( )=

and with the initial x defined to be zero (we can always shift the coordinate system to make this so), and 
having zero acceleration in the x direction, we have

x t( ) x0 v0 t cos θ( )+
1

2
ax t

2+=

The range is the maximum x-displacement of the projectile. This occurs at the time of flight, so that, 
starting with the kinematic equation for the x-motion,

RangePROJECTILE MOTION
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Different versions of a symbolic math processor developed these two solutions; they can be shown 
(numerically) to be equal. We will use the arctan form, since it is a bit simpler.

Observe that for a zero initial height, Eq(2) is 45 degrees. We can also see this using the range 
expression for this case

R
v0

2

g
sin 2 θ( )= y0 0= (3)

and recognizing that this will be a maximum when 2θ is 90 degrees, so θ must be 45 degrees. This can of 
course also be done by the usual calculus procedure, with the same result.

Next we seek the range that will result if we use this optimum angle. Substituting Eq(2) into Eq(1) and 
doing a lot of algebra (or letting a symbolic math program do it), we get a remarkably simple result

Rmax

v0

g
v0

2
2 g y0+=

v0 vf

g
= (4)

This says that the maximum range is the product of the initial and final velocities, divided by g. When the 
initial height is zero,

Rmax

v0
2

g
=

which we can immediately see from Eq(3); recall that for this case the initial and final velocities are equal.

Finally, we should plot the range as a function of its parameters. More detailed plots are in the graphics 
portion of this packet; for now here is one version. 
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The initial velocity is 5 m/s; the initial heights are 0 (thick line), 5, 10, 15, 20 m. The calculated maximum 
points from Eqs(2) and (4) are indicated by the squares for the first and last case. Note that only the zero 
initial height case is symmetric- this relates to the "Galileo angles" discussed on another sheet.
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