
A Random Chord? 
By Chris Patterson 

Introduction 
On 31 July Steven Strogatz asked Twitter “Imagine picking a random chord on a circle. On average, how 

long is it compared to the circle’s diameter?”  What is a chord? It is that part of a secant line which is 

inside the circle. The chord separates the circumference into two arcs.  

 

The minimum chord length will be zero, when 
points A and B coincide. The maximum possible 
chord is a diameter.   Therefore,  0 ≤ 𝐴𝐵̅̅ ̅̅  ≤ 𝐷.    It 
seems I will get random chords by drawing 
random lines through random circles.  I decided 
this was too much randomness.  Instead, I decided 
to take a different approach, making use of the 
symmetries of a circle.   

 

A Table of Circle Symmetries  
Circle Symmetry Decision 
Circles are congruent after translation I will centre the circle on the origin. 
Circles are similar under enlargement.   My circle will be a unit circle, 

 with radius 𝑟 =  1 radius. (“One radius” could 
be 2 inches, or 3 km, or 4 Martian miles, 
almost anything.) 

Circles are congruent after rotation.   I will use polar coordinates (𝑟;  𝜃) with one 
endpoint of the chord on the polar ray.  Hence,  
𝐴 =  (1;  0).  Remember, 𝑟 =  1.  

Circles are congruent after reflection.   Since the maximum chord length is a diameter, 

I can work with the semicircle 𝑦 =  √1 −  𝑥2 
 

Trigonometry 

 

My next thought was that sines originated in the study 
of chords.   Rather than working with random lines, I 
will work with random angles.  Lines are defined by 
two points, i.e., four random values (𝑥1 , 𝑦1) and 

(𝑥2, 𝑦2).   Rotating in an anticlockwise sense from the 
polar ray, I need a single random number, 𝜃.   

Moreover, the chord formula, chord (𝜃) = 2 sin (
𝜃

2
) 

gives me the length of the chord in a very nice form.  
 

https://twitter.com/stevenstrogatz/status/1421314632493502465


 With these initial conditions I produced this Geogebra spreadsheet and its associated graph. 

 

Note that the angles in column B are given in radians by the formula 𝜃 = 𝑟𝑎𝑛𝑑𝑜𝑚()𝜋 .  Geogebra shows 

these angles in degrees in column C, but I work with radians throughout.  Radians are a very natural 

measure of angles that arise from a reinterpretation of the circumference formula, 𝐶 = 2 𝜋𝑟 and greatly 

simplify the calculus of trigonometric functions. I was reasonably happy with this as an initial 

exploration.  However, I also had doubts: 

• Should the length be reported as a decimal number? 

• Would I recognise the significance of a particular decimal expansion?  Is 1.57 simply 1.57.  Or is 

it 
𝜋

2
?   

• How many trials would be enough?  

• Should I consider a statistical solution satisfactory for a problem posed in pure maths? 

 

Feeling stuck, I pivoted to a simpler problem.  
What is the average dice throw if I repeatedly toss 
a single, fair, six-sided dice?  Is a spreadsheet the 
best way to answer this problem? The entries in 
column B are randombetween (1, 6).  If I 
recalculated, the entries in column B would 
change, and therefore the average as well. 
 



A more mathematical method considers the distribution of dice tosses.  Assuming the Fates are 

indifferent, i) the order of tosses is of no consequence, and ii) every face should occur equally often 

provided I toss long enough.  With these ideas in mind, I can create a theoretical table, yielding an exact 

result.  The average toss is three and a half.  Of course, no single toss can be 3½, but that is merely a 

reminder to be careful when thinking about averages.  

Toss, 𝑥  Probability,  𝑃(𝑥) Product: 𝑥 𝑃(𝑥) 

1 1/6 1/6 
2 1/6 2/6 
3 1/6 3/6 
4 1/6 4/6 
5 1/6 5/6 
6 1/6 6/6 
Sum 6/6 21/6 = 3½  
 

Can I create a similar table for the chord length distribution?  The immediate problem is that chord 

lengths are distributed continuously, unlike the discrete dice tosses.  There were only six possible 

values for the dice toss; there is an infinite number of different chord lengths.   A mathematical maxim, 

when dealing with infinities, try calculus!  Accordingly, I turned again to Geogebra to create the graph of 

𝑦 = 2 sin (
𝜃

2
)  on the domain 0 ≤  𝜃 ≤ 𝜋 radians.   

 

Why? Although I cannot add up every 𝑦-value, I can find the area between 𝑦 = 2 sin (
𝜃

2
) and 𝑦 = 0 from 

𝑥 =  0 to 𝑥 = 𝜃.  One typical area, 𝐴, is shown shaded in light blue together with a small adjoining 

darker blue rectangle, ∆𝐴.  The width of this rectangle is ∆𝜃, a small increment in 𝜃, perhaps 0.1 radians. 

The height of the rectangle is 𝑦 + ∆𝑦.  The area of a rectangle is length times width.  Hence,  

∆𝐴 =  ∆𝜃 × (𝑦 + ∆𝑦)

  = 𝑦∆𝜃 +  ∆𝑦 ∆𝜃
   

As I make  ∆𝜃 smaller, ∆𝑦 also becomes smaller.  Importantly, both the terms of the sum, 𝑦∆𝜃  

and∆𝑦 ∆𝜃, become smaller, and the latter term is always much smaller than the former.  See the table 

below. 



 

Eventually, ∆𝑦 ∆𝜃 becomes of no consequence.  This yields the result I want:  

 ∆𝐴 →  𝑑𝐴 =  𝑦 𝑑𝜃 + 0 = 𝑦 𝑑𝜃.  

We call ‘dee-A’ and ‘dee-theta’ infinitesimals. (Disclaimer: the argument above is not a proof; please 

consult any standard calculus text.)  I can rearrange 𝑑𝐴 =  𝑦 𝑑𝜃 to make 𝑦 the subject of the equation:  

𝑑𝐴

𝑑𝜃
= 𝑦  

Hence, 
𝑑𝐴

𝑑𝜃
=  2 sin (

𝜃

2
). 

Amazing!  Now I can simply look for an already solved problem in differential calculus and I will have a 

formula for the area, 𝐴, as a function of the angle, 𝜃.  This insight, in the late 1600s, by Newton and 

Leibnitz changed everything.  If you know the chain rule and remember 
𝑑 cos 𝑥

𝑑𝑥
=  − sin 𝑥  you will have 

already jumped ahead of me;  𝐴 = −4 cos (
𝜃

2
) + 𝑘.  Or, if you have yet to learn calculus, perhaps this 

essay will provide sufficient motivation.   After doing a little bit of arithmetic, I obtain the result that  

𝐴 =  (−4 cos (
𝜋

2
) + 𝑘) − (−4 cos(0) + 𝑘) =  0 − (−4) + 𝑘 − 𝑘 = 4  units 

Since A is an area, the units will be the product of the y-axis units and the x-axis units. The y-axis is 

measured in radiuses.  Remember 𝑟 =  1 was an initial choice and the 𝑥-axis is measured in radians, or, 

in a sense, anticlockwise distances along the unit circle circumference in fractions of 𝜋.  Thus, the 

average chord will be Area, 𝐴, divided by the angle, 𝜃.  Some more calculus: ∫ 1 𝑑𝜃 =  𝜋 − 0 =  𝜋.
𝜋

0
  As 

this calculation is peripheral to my essay, I will again suggest you consult a textbook for further details. 

Drum roll!  My average random chord has a length of  
4

𝜋
 .  (I was right to mistrust decimal expansions.) 

Using the approximation  𝜋 =  
22

7
,  the average chord is 

14

11
 units.  As 𝑟 = 1, D must be 2 units.   The 

average chord is about 
7

11
  of a diameter. 



Reflection: 
Upon arriving at a solution, it is good to go back and look at the starting point, which was a vague notion 

of random chords obtained by drawing random lines through random circles.  As this seemed intractable, 

I created a similar problem I believed I could solve.  The tools I had ‘at hand’ included symmetries, polar 

coordinates, trigonometry, probability distributions, radians, and especially calculus.  

I have no doubt that my solution is correct, given the constraints I imposed.  The larger question, 

however, is did those constraints diminish or change the original problem?  My suspicions were that 

other procedures for picking a random chord would generate other distributions with averages other 

than 
4 

𝜋
.  Twitter confirmed these suspicions.   Dr Strogatz was not simply setting a problem in calculus; 

he was asking us to think about the foundations of probability theory.   

Feedback 
Your comments are welcome, particularly  

• constructive criticism, 

• suggestions for future blog posts. 

 


