#### INTERNATIONAL BACCALAUREATE

### Mathematics: analysis and approaches

# MAA

# EXERCISES [MAA 5.2] DERIVATIVES – BASIC RULES

Compiled by Christos Nikolaidis

# O. Practice questions

**1.** [Maximum mark: 20] **[without GDC]** Differentiate the following functions:

| f(x)                                                     | f'(x) |
|----------------------------------------------------------|-------|
| $f(x) = 2x^5$                                            |       |
| $f(x) = \frac{2}{x^5}$                                   |       |
| $f(x) = x^3 + \ln x$                                     |       |
| $f(x) = 2\sin x + 3\cos x + 5e^x$                        |       |
| $f(x) = 5x^3 + 2x^2 + 3x + 7$                            |       |
| $f(x) = \frac{5}{x^3} + \frac{2}{x^2} + \frac{3}{x} + 7$ |       |
| $f(x) = \sqrt{x} - x + 1$                                |       |
| $f(x) = 6\sqrt[3]{x^5}$                                  |       |
| f(x) = mx + c                                            |       |
| $f(x) = ax^2 + bx + c$                                   |       |

# 2. [Maximum mark: 24] [without GDC]

Differentiate the following functions without using the product or the quotient rules:

| f(x)                                                      | Simplify $f(x)$ | f'(x) |
|-----------------------------------------------------------|-----------------|-------|
| $f(x) = x^2(2x+3)$                                        | $=2x^3+3x^2$    |       |
| f(x) = (3x+2)(2x+3)                                       |                 |       |
| $f(x) = 2x^3 + \frac{5}{x^3} + 1$                         |                 |       |
| $f(x) = 1 + \frac{2}{x} + \frac{3}{x^2}$                  |                 |       |
| $f(x) = x^2 \left(1 + \frac{2}{x} + \frac{3}{x^2}\right)$ |                 |       |
| $f(x) = \frac{1 + x + x^2}{x^2}$                          |                 |       |
| $f(x) = \frac{3x^5}{2} + \frac{2}{3x^4}$                  |                 |       |
| $f(x) = \frac{2x^5 + 5x^2 + 1}{x^2}$                      |                 |       |
| $f(x) = \frac{2x^5 + 5x^2 + 1}{3x^2}$                     |                 |       |
| $f(x) = 3x(\sqrt{x} + 1)$                                 |                 |       |
| $f(x) = \sqrt{x}(2x + 3\sqrt{x})$                         |                 |       |
| $f(x) = \frac{2x + 3\sqrt{x}}{\sqrt{x}}$                  |                 |       |

# 3. [Maximum mark: 28] [without GDC]

Differentiate the following functions:

| y = f(x)                                                            | $\frac{\mathrm{d}y}{\mathrm{d}x}$ |
|---------------------------------------------------------------------|-----------------------------------|
| $y = e^x \sin x$                                                    |                                   |
| $y = e^x \cos x$                                                    |                                   |
| $y = x^3 e^x$                                                       |                                   |
| $y = x^2 \ln x$                                                     |                                   |
| $y = \sqrt{x} \sin x$                                               |                                   |
| $y = (2x+3)\cos x$                                                  |                                   |
| $y = \frac{e^x}{\sin x}$                                            |                                   |
| $y = \frac{\sin x}{e^x}$                                            |                                   |
| $y = \frac{e^x + 1}{\cos x}$                                        |                                   |
| $y = \frac{2x - 1}{3x + 5}$                                         |                                   |
| $y = \frac{2x+3}{\cos x}$                                           |                                   |
| $y = \frac{\cos x}{2x+3}$                                           |                                   |
| $y = \frac{7x^3}{5} + \frac{7}{5x^3} + \frac{4x}{3} - \frac{4}{3x}$ |                                   |
| $y = x^2 + \ln x + x^2 \ln x$                                       |                                   |

| 4. | [Maxi | mum mark: 6]                | [with / without GDC]      |     |
|----|-------|-----------------------------|---------------------------|-----|
|    | Let   | $f(x) = 2x^3 + \ln x$       |                           |     |
|    | (a)   | Find (i) $f'(x)$            | (ii) $f''(x)$ .           | [4] |
|    |       | Find (i) $f'(1)$            |                           | [2] |
|    |       |                             |                           |     |
|    |       |                             |                           |     |
|    |       |                             |                           |     |
|    |       |                             |                           |     |
|    |       |                             |                           |     |
|    |       |                             |                           |     |
|    |       |                             |                           |     |
| 5. | [Maxi | mum mark: 6]                | [with GDC]                |     |
|    | Let   | $f(x) = \frac{x^2}{\sin x}$ |                           |     |
|    | (a)   | Find $f'(x)$ .              |                           | [3] |
|    | (b)   | Find the gradient           | of the curve $y = f(x)$ . |     |
|    |       | (i) at $x = \frac{\pi}{2}$  | (ii) at $x = 1$ rad.      | [3] |
|    |       |                             |                           |     |
|    |       |                             |                           |     |
|    |       |                             |                           |     |
|    |       |                             |                           |     |
|    |       |                             |                           |     |
|    |       |                             |                           |     |
|    |       |                             |                           |     |
|    |       |                             |                           |     |
|    |       |                             |                           |     |
|    |       |                             |                           |     |
|    |       |                             |                           |     |
|    |       |                             |                           |     |

## 6. [Maximum mark: 12] [without GDC]

Given the following values at x = 1

| х | f(x) | g(x) | f'(x) | g'(x) |
|---|------|------|-------|-------|
| 1 | 2    | 3    | 4     | 5     |

Calculate the derivatives of the following functions at x = 1

- (i) y = 2f(x) + 3g(x)
- (ii) y = f(x)g(x)

(iii)  $y = \frac{f(x)}{g(x)}$ 

(iv)  $y = 2x^3 + 1 + 5f(x)$ 

7. [Maximum mark: 10] [without GDC]

The diagram shows the graph of a function y = f(x), for  $0 \le x \le 8$ .



(a) Complete the table below.

| х    | 1 | 3 | 5 | 7 |
|------|---|---|---|---|
| f(x) |   |   |   |   |

[2]

[4]

[2]

(b) Complete the table below.

| x     | 1 | 3 | 5 | 7 |
|-------|---|---|---|---|
| f'(x) |   |   |   |   |

(c) Complete the table below.

| x     | 1.7 | 4.1 | 5.8 | 6.5 |
|-------|-----|-----|-----|-----|
| f'(x) |     |     |     |     |

(d) Solve the equation f(x) = 6. [2]

8. [Maximum mark: 5] [without GDC]

Let  $f(x) = 5x^2 - 3x$ . Find the coordinates of the point where the gradient is 7.

.....

9. [Maximum mark: 4] [without GDC]

The graph of the quadratic function below has a vertex at x = 3.



- (a) Write down the value of f'(3). [1]
- (b) Given that f(2) = 5, write down the value of f(4). [1]
- (c) Given that f'(2) = 2, write down the value of f'(4). [2]

| Α.  | Exan | n style questions (SHORT)                |                                         |     |
|-----|------|------------------------------------------|-----------------------------------------|-----|
| 10. | _    | kimum mark: 4] <i>[withou</i>            | nt GDC]                                 |     |
|     |      | $f(x) = x^3 - 2x^2 - 1.$                 |                                         |     |
|     | (a)  | Find $f'(x)$                             |                                         | [2] |
|     | (b)  | Find the gradient of the cu              | urve of $f(x)$ at the point $(2, -1)$ . | [2] |
|     |      |                                          |                                         |     |
|     |      |                                          |                                         | •   |
|     |      |                                          |                                         |     |
|     |      |                                          |                                         |     |
| 11. |      | kimum mark: 4] <i>[withou</i>            | nt GDC]                                 |     |
|     | Let  | $f(x) = 6\sqrt[3]{x^2}$ . Find $f'(x)$ . |                                         |     |
|     |      |                                          |                                         |     |
|     |      |                                          |                                         | •   |
|     |      |                                          |                                         |     |
|     |      |                                          |                                         |     |
|     |      |                                          |                                         |     |
|     |      |                                          |                                         |     |
|     |      |                                          |                                         |     |
| 12. | [Max | kimum mark: 6] <i>[withou</i>            | nt GDC]                                 |     |
|     | l et | $h(x) = \frac{6x}{}$ . Find $h'(0)$      |                                         |     |
|     | LOU  | $\cos x$                                 |                                         |     |
|     |      |                                          |                                         |     |
|     |      |                                          |                                         |     |
|     |      |                                          |                                         |     |
|     |      |                                          |                                         | •   |
|     |      |                                          |                                         |     |
|     |      |                                          |                                         | •   |
|     |      |                                          |                                         |     |
|     |      |                                          |                                         |     |
|     |      |                                          |                                         |     |
|     |      |                                          |                                         |     |

| 13. | livia      | ximum mark: 6]                   | [without GDC]                                                                                                                                       |            |
|-----|------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|     | Let g      | $g(x) = 2x \sin x.$              |                                                                                                                                                     |            |
|     | (a)        | Find $g'(x)$ .                   |                                                                                                                                                     | [3]        |
|     | (b)        | Find the gradien                 | t of the graph of $g$ at $x = \pi$ .                                                                                                                | [3]        |
|     |            |                                  |                                                                                                                                                     |            |
|     |            |                                  |                                                                                                                                                     |            |
|     |            |                                  |                                                                                                                                                     |            |
|     |            |                                  |                                                                                                                                                     |            |
|     |            |                                  |                                                                                                                                                     |            |
|     |            |                                  |                                                                                                                                                     |            |
|     |            |                                  |                                                                                                                                                     |            |
| 14. | [Max       | ximum mark: 5]                   | Swithout GDCI                                                                                                                                       |            |
| 17. |            | $f(x) = \frac{3x^2}{5x-1}$ .     | [without 326]                                                                                                                                       |            |
|     | Let        | $J(x) = \frac{1}{5x-1}$          |                                                                                                                                                     |            |
|     |            |                                  |                                                                                                                                                     |            |
|     | (a)        |                                  | <b>equation</b> of the vertical asymptote of $y = f(x)$ .                                                                                           |            |
|     | (a)<br>(b) |                                  | <b>equation</b> of the vertical asymptote of $y = f(x)$ . e your answer in the form $\frac{ax^2 + bx}{(5x-1)^2}$ where $a$ and $b \in \mathbb{Z}$ . |            |
|     |            |                                  |                                                                                                                                                     |            |
|     |            |                                  |                                                                                                                                                     | [1]<br>[4] |
|     |            | Find <i>f</i> ′( <i>x</i> ). Giv |                                                                                                                                                     |            |
|     |            | Find <i>f</i> ′( <i>x</i> ). Giv | e your answer in the form $\frac{ax^2+bx}{(5x-1)^2}$ where $a$ and $b\in\mathbb{Z}$ .                                                               |            |
|     |            | Find <i>f</i> ′( <i>x</i> ). Giv | e your answer in the form $\frac{ax^2+bx}{(5x-1)^2}$ where $a$ and $b\in\mathbb{Z}$ .                                                               |            |
|     |            | Find <i>f</i> ′( <i>x</i> ). Giv | e your answer in the form $\frac{ax^2+bx}{(5x-1)^2}$ where $a$ and $b\in\mathbb{Z}$ .                                                               |            |
|     |            | Find <i>f</i> ′( <i>x</i> ). Giv | e your answer in the form $\frac{ax^2+bx}{(5x-1)^2}$ where $a$ and $b\in\mathbb{Z}$ .                                                               |            |
|     |            | Find <i>f</i> ′( <i>x</i> ). Giv | e your answer in the form $\frac{ax^2 + bx}{(5x-1)^2}$ where $a$ and $b \in \mathbb{Z}$ .                                                           |            |
|     |            | Find <i>f</i> ′( <i>x</i> ). Giv | e your answer in the form $\frac{ax^2 + bx}{(5x-1)^2}$ where $a$ and $b \in \mathbb{Z}$ .                                                           |            |

| 15. | [Max | kimum mark: 6]                                                                             |
|-----|------|--------------------------------------------------------------------------------------------|
|     | Give | en the function $f(x) = x^2 - 3bx + (c+2)$ , determine the values of $b$ and $c$ such that |
|     | f(1) | y = 0 and $f'(3) = 0$ .                                                                    |
|     |      |                                                                                            |
|     |      |                                                                                            |
|     |      |                                                                                            |
|     |      |                                                                                            |
|     |      |                                                                                            |
|     |      |                                                                                            |
|     |      |                                                                                            |
|     |      |                                                                                            |
|     |      |                                                                                            |
|     |      |                                                                                            |
|     |      |                                                                                            |
|     |      |                                                                                            |
|     |      |                                                                                            |
| 16. |      | kimum mark: 7] <b>[without GDC]</b> sider the function $f(x) = x \ln x - x$ .              |
|     |      |                                                                                            |
|     |      |                                                                                            |
|     | (b)  | Find the coordinates of the point where the gradient of the curve is 1.                    |
|     |      |                                                                                            |
|     |      |                                                                                            |
|     |      |                                                                                            |
|     |      |                                                                                            |
|     |      |                                                                                            |
|     |      |                                                                                            |
|     |      |                                                                                            |
|     |      |                                                                                            |
|     |      |                                                                                            |
|     |      |                                                                                            |
|     |      |                                                                                            |
|     |      |                                                                                            |

# [MAA 5.2] DERIVATIVES - BASIC RULES

| 17. | -    | Rimum mark: 5] [without GDC]                                                                                   |     |
|-----|------|----------------------------------------------------------------------------------------------------------------|-----|
|     | Cons | sider the curve of the function $f(x) = 2e^x - 4x + 1$ .                                                       |     |
|     | Find | the $x$ -coordinate of the point where the gradient of the curve is 0.                                         |     |
|     |      |                                                                                                                |     |
|     |      |                                                                                                                |     |
|     |      |                                                                                                                |     |
|     |      |                                                                                                                |     |
|     |      |                                                                                                                |     |
|     |      |                                                                                                                |     |
|     |      |                                                                                                                |     |
|     |      |                                                                                                                |     |
|     |      |                                                                                                                |     |
|     |      |                                                                                                                |     |
|     |      |                                                                                                                |     |
|     |      |                                                                                                                |     |
| 18. | _    | kimum mark: 8]                                                                                                 |     |
|     | Let  | $f(x) = \tan x.$                                                                                               |     |
|     | (a)  | Show that $f'(x) = \frac{1}{\cos^2 x}$ .                                                                       | [3] |
|     | (b)  | Show that the gradients of the curve of $f(x)$ at $x = 0$ , $x = \frac{\pi}{4}$ and $x = \frac{\pi}{3}$ are in |     |
|     |      | geometric sequence.                                                                                            | [5] |
|     |      |                                                                                                                |     |
|     |      |                                                                                                                |     |
|     |      |                                                                                                                |     |
|     |      |                                                                                                                |     |
|     |      |                                                                                                                |     |
|     |      |                                                                                                                |     |
|     |      |                                                                                                                |     |
|     |      |                                                                                                                |     |
|     |      |                                                                                                                |     |
|     |      |                                                                                                                |     |
|     |      |                                                                                                                |     |
|     |      |                                                                                                                |     |
|     |      |                                                                                                                |     |
|     |      |                                                                                                                |     |

| Consider the function $f(x) = kx^3 - 30x + 1$ , where $k$ is a constant. The gradient of the curve of $f(x)$ at $x = 2$ is 6. Find the value of $k$ .  20. [Maximum mark: 4] [without GDC]  Consider the function $f(x) = k \sin x + 3x$ , where $k$ is a constant.  (a) Find $f'(x)$ .  (b) When $x = \frac{\pi}{3}$ , the gradient of the curve of $f(x)$ is 8. Find the value of |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 20. [Maximum mark: 4] [without GDC]  Consider the function $f(x) = k \sin x + 3x$ , where $k$ is a constant.  (a) Find $f'(x)$ .  (b) When $x = \frac{\pi}{3}$ , the gradient of the curve of $f(x)$ is 8. Find the value of                                                                                                                                                        |          |
| Consider the function $f(x) = k \sin x + 3x$ , where $k$ is a constant.  (a) Find $f'(x)$ .  (b) When $x = \frac{\pi}{3}$ , the gradient of the curve of $f(x)$ is 8. Find the value of                                                                                                                                                                                             |          |
| Consider the function $f(x) = k \sin x + 3x$ , where $k$ is a constant.  (a) Find $f'(x)$ .  (b) When $x = \frac{\pi}{3}$ , the gradient of the curve of $f(x)$ is 8. Find the value of                                                                                                                                                                                             |          |
| Consider the function $f(x) = k \sin x + 3x$ , where $k$ is a constant.  (a) Find $f'(x)$ .  (b) When $x = \frac{\pi}{3}$ , the gradient of the curve of $f(x)$ is 8. Find the value of                                                                                                                                                                                             |          |
| Consider the function $f(x) = k \sin x + 3x$ , where $k$ is a constant.  (a) Find $f'(x)$ .  (b) When $x = \frac{\pi}{3}$ , the gradient of the curve of $f(x)$ is 8. Find the value of                                                                                                                                                                                             |          |
| Consider the function $f(x) = k \sin x + 3x$ , where $k$ is a constant.  (a) Find $f'(x)$ .  (b) When $x = \frac{\pi}{3}$ , the gradient of the curve of $f(x)$ is 8. Find the value of                                                                                                                                                                                             |          |
| Consider the function $f(x) = k \sin x + 3x$ , where $k$ is a constant.  (a) Find $f'(x)$ .  (b) When $x = \frac{\pi}{3}$ , the gradient of the curve of $f(x)$ is 8. Find the value of                                                                                                                                                                                             |          |
| Consider the function $f(x) = k \sin x + 3x$ , where $k$ is a constant.  (a) Find $f'(x)$ .  (b) When $x = \frac{\pi}{3}$ , the gradient of the curve of $f(x)$ is 8. Find the value of                                                                                                                                                                                             |          |
| Consider the function $f(x) = k \sin x + 3x$ , where $k$ is a constant.  (a) Find $f'(x)$ .  (b) When $x = \frac{\pi}{3}$ , the gradient of the curve of $f(x)$ is 8. Find the value of                                                                                                                                                                                             |          |
| Consider the function $f(x) = k \sin x + 3x$ , where $k$ is a constant.  (a) Find $f'(x)$ .  (b) When $x = \frac{\pi}{3}$ , the gradient of the curve of $f(x)$ is 8. Find the value of                                                                                                                                                                                             |          |
| Consider the function $f(x) = k \sin x + 3x$ , where $k$ is a constant.  (a) Find $f'(x)$ .  (b) When $x = \frac{\pi}{3}$ , the gradient of the curve of $f(x)$ is 8. Find the value of                                                                                                                                                                                             |          |
| Consider the function $f(x) = k \sin x + 3x$ , where $k$ is a constant.  (a) Find $f'(x)$ .  (b) When $x = \frac{\pi}{3}$ , the gradient of the curve of $f(x)$ is 8. Find the value of                                                                                                                                                                                             |          |
| Consider the function $f(x) = k \sin x + 3x$ , where $k$ is a constant.  (a) Find $f'(x)$ .  (b) When $x = \frac{\pi}{3}$ , the gradient of the curve of $f(x)$ is 8. Find the value of                                                                                                                                                                                             |          |
| (a) Find $f'(x)$ .  (b) When $x = \frac{\pi}{3}$ , the gradient of the curve of $f(x)$ Is 8. Find the value of                                                                                                                                                                                                                                                                      |          |
| (b) When $x = \frac{\pi}{3}$ , the gradient of the curve of $f(x)$ Is 8. Find the value of                                                                                                                                                                                                                                                                                          |          |
|                                                                                                                                                                                                                                                                                                                                                                                     |          |
|                                                                                                                                                                                                                                                                                                                                                                                     | of $k$ . |
|                                                                                                                                                                                                                                                                                                                                                                                     |          |
|                                                                                                                                                                                                                                                                                                                                                                                     |          |
|                                                                                                                                                                                                                                                                                                                                                                                     |          |
|                                                                                                                                                                                                                                                                                                                                                                                     |          |
|                                                                                                                                                                                                                                                                                                                                                                                     |          |
|                                                                                                                                                                                                                                                                                                                                                                                     |          |
|                                                                                                                                                                                                                                                                                                                                                                                     |          |
|                                                                                                                                                                                                                                                                                                                                                                                     |          |
|                                                                                                                                                                                                                                                                                                                                                                                     |          |
|                                                                                                                                                                                                                                                                                                                                                                                     |          |
|                                                                                                                                                                                                                                                                                                                                                                                     |          |
|                                                                                                                                                                                                                                                                                                                                                                                     |          |
| ••••••                                                                                                                                                                                                                                                                                                                                                                              |          |

### **21.** [Maximum mark: 4] *[without GDC]*

The graph of the function y = f(x),  $0 \le x \le 4$ , is shown below.



- (a) Write down the value of (i) f(1)
- (ii) f(3)
- (b) Write down the value of (i) f'(1)
- (ii) f'(3)

# 22. [Maximum mark: 6] [without GDC]

Part of the graph of the periodic function f is shown below. The domain of f is  $0 \le x \le 15$  and the period is 3.



- (a) Find
- (i) f(2)
- (ii) f'(6.5)
- (iii) f'(14)
- (b) How many solutions are there to the equation f(x) = 1 over the given domain?

.....

23. [Maximum mark: 8] [with GDC]

Let  $f(x) = x \cos x$ , for  $0 \le x \le 6$ .

- (a) Find f'(x). [3]
- (b) On the grid below, sketch the graph of y = f'(x). [3]
- (c) Write down the range of the function y = f'(x), for  $0 \le x \le 6$  [2]



| ••••• |
|-------|
| <br>  |
| <br>  |
|       |
|       |
| <br>  |
| <br>  |
| <br>  |
| <br>  |
|       |

| 24.  | [Maximum mark: 6]                      | [without GDC]                                                              |  |  |  |  |  |
|------|----------------------------------------|----------------------------------------------------------------------------|--|--|--|--|--|
|      | $Let f(x) = ax^2 + bx + c$             | . Given that $f(0) = 2$ , $f'(0) = -3$ , $f''(0) = 6$ , find the values of |  |  |  |  |  |
|      | a,b and $c$                            |                                                                            |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |
| 25*. | [Maximum mark: 6]                      | [without GDC]                                                              |  |  |  |  |  |
|      | Let $f$ be a cubic poly                | nomial function. Given that $f(0) = 2$ , $f'(0) = -3$ , $f(1) = f'(1)$     |  |  |  |  |  |
|      | and $f''(-1) = 6$ , find $f''(-1) = 6$ | f(x).                                                                      |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |
|      |                                        |                                                                            |  |  |  |  |  |

#### B. Exam style questions (LONG)

#### 26. [Maximum mark: 18] [without GDC]

The following diagram shows part of the graph of the function  $f(x) = 2x^3 + ax^2 - 5x + b$  and two points P(1,5) and Q which lie on this curve.



(a) Show that 
$$a+b=8$$
.

The gradient of the curve at point P is 7.

- (b) Find an expression for f'(x). [2]
- (c) **Hence** show that a = 3 and find the value of b. [3]
- (d) Find the gradient of the curve at x = 0. [1]

The gradient of the curve at point Q is equal to the gradient at point P.

- (e) Find the coordinates of Q. [6]
- (f) Find the equation of the line (PQ) in the form y = mx + c. [4]

## [MAA 5.2] DERIVATIVES – BASIC RULES

| 27*. | [Max | kimum mark: 16] <i>[without GDC]</i>                                                               |     |
|------|------|----------------------------------------------------------------------------------------------------|-----|
|      | The  | $\emph{n}$ -th derivative of a function $\emph{f}$ is denoted by $\emph{f}^{(\emph{n})}(\emph{x})$ |     |
|      | (a)  | Let $f(x) = x^4$ . Find the first four derivatives of $f$ [i.e. up to $f^{(4)}(x)$ ].              | [4] |
|      | (b)  | Let $g(x) = x^4 + ax^3 + bx^2 + cx + d$ . Write down the value of $g^{(4)}(x)$ .                   | [2] |
|      | (c)  | Let $h(x) = x^m$ . Find the value of $g^{(m)}(x)$ in terms of $m$ .                                | [2] |
|      | (d)  | Let $k(x) = \frac{1}{x}$                                                                           |     |
|      |      | (i) Show that $k^{(4)}(x) = \frac{24}{x^5}$ .                                                      | [5] |
|      |      | (ii) Guess a formula for $k^{(n)}(x)$ , the $n$ -th derivative of $k(x)$ .                         | [3] |
|      |      |                                                                                                    |     |
|      |      |                                                                                                    |     |
|      |      |                                                                                                    |     |
|      |      |                                                                                                    |     |
|      |      |                                                                                                    |     |
|      |      |                                                                                                    |     |
|      |      |                                                                                                    |     |
|      |      |                                                                                                    |     |
|      |      |                                                                                                    |     |
|      |      |                                                                                                    |     |
|      |      |                                                                                                    |     |
|      |      |                                                                                                    |     |
|      |      |                                                                                                    |     |
|      |      |                                                                                                    |     |
|      |      |                                                                                                    |     |
|      |      |                                                                                                    |     |
|      |      |                                                                                                    |     |
|      |      |                                                                                                    |     |
|      |      |                                                                                                    |     |
|      |      |                                                                                                    |     |
|      |      |                                                                                                    |     |
|      |      |                                                                                                    |     |
|      |      |                                                                                                    |     |
|      |      |                                                                                                    |     |