Explanatory notes on Fehr 6\&7

Since we are calling the z-axis the imaginary axis and leaving the x - and y-axes the same, a point on the phantom graph that looks like (a, b, c) means that if $x=a+i c$ and $y=b$ then these will satisfy the original equation.

So since $\left(0,-\frac{25}{3}, \pm \frac{20}{3}\right)$ is on the phantom graph, $x=i \frac{20}{3}$ and $y=-\frac{25}{3}$ should satisfy both of the original equations.

Check: $x^{2}+y^{2}=\left(i \frac{20}{3}\right)^{2}+\left(-\frac{25}{3}\right)^{2}=-\frac{400}{9}+\frac{625}{9}=\frac{225}{9}=25$ so it is 'on' the circle.
Similarly $\frac{16}{3} y=\frac{16}{3}\left(-\frac{25}{3}\right)=-\frac{400}{9}$ and $x^{2}=\left(i \frac{20}{3}\right)^{2}=-\frac{400}{9}$. The coordinates satisfy both equations.,

