INTERNATIONAL BACCALAUREATE

Mathematics: analysis and approaches

MAA

EXERCISES [MAA 3.5] SIN, COS, TAN ON THE UNIT CIRCLE – IDENTITIES

Compiled by Christos Nikolaidis

O. Practice questions

1. [Maximum mark: 12] [without GDC]

Let
$$\sin 20^\circ = p$$
, and $\cos 20^\circ = q$ (so that $p^2 + q^2 = 1$)

By observing the unit circle

express the following in terms of p and/or q

sin160°	sin200°	
cos160°	cos200°	
tan160°	tan200°	

sin340°	sin(-20°)	
cos340°	cos(-20°)	
tan340°	tan(-20°)	

2.	[Maximum mark: 5]	[wii	thout GDC	7

Let $\sin 20^\circ = p$, and $\cos 20^\circ = q$ (so that $p^2 + q^2 = 1$)

Write down expressions for the following

tan 20° =	(in terms of p and q)
sin 40°=	(in terms of p and q)
cos 40° =	(in terms of p and q)
	(in terms of p only)
	(in terms of q only)

3. [Maximum mark: 7] [without GDC]

Given that $\sin x = p$, where x is an **acute** angle

(a) Find the value of $\cos x$ in terms of p;

[2]

- (b) **Hence**, express the following in terms of p:
 - (i) $\tan x$ (ii) $\cos 2x$
 - (ii) $\cos 2x$ (iii) $\sin 2x$
- (iv) $\tan 2x$
- (v) $\sin 4x$

[5]

	Formula	Expression in terms of p
tan x		
$\cos 2x$		
sin 2x		
tan 2x		
$\sin 4x$		

4.

_	ximum mark: 15] [without heta be an angle in the first qua	-	< 90° .	
(a)	Given that $\sin \theta = \frac{3}{4}$, find	(i) $\cos \theta$	(ii) $\tan \theta$.	[5]
(b)	Given that $\cos \theta = \frac{3}{4}$, find	(i) $\sin \theta$	(ii) $\tan \theta$	[5]
(c)	Given that $\tan \theta = \frac{3}{4}$, find	(i) $\sin \theta$	(ii) $\cos \theta$	[5]

5.

o) (Given that Given that	$\sin\theta = \frac{3}{4}$	- , find	/i)				
	Given that		,	(1)	$\cos \theta$	(ii)	$\tan heta$.	
c) ($\cos \theta = -$	$-\frac{1}{4}$, find	(i)	$\sin \theta$	(ii)	$\tan \theta$.	
	Given that	$\tan \theta = -$	-4 , find	(i)	$\sin \theta$	(ii)	$\cos \theta$.	
•								

[without GDC]

6.

[Maximum mark: 6]

(a)	$\frac{1 - \cos 2\theta}{\sin 2\theta} = \tan \theta. \qquad (b) \qquad \frac{\sin 2\theta}{1 + \cos 2\theta} = \tan \theta$
_	kimum mark: 15] <i>[without GDC]</i>
Let	θ be an angle for which $\cos \theta + \sin \theta = a$ and $\cos \theta > \sin \theta$.
Let ((a)	θ be an angle for which $\cos \theta + \sin \theta = a$ and $\cos \theta > \sin \theta$. By taking squares on both sides, find the value of $\sin 2\theta$ in terms of a .
_	θ be an angle for which $\cos \theta + \sin \theta = a$ and $\cos \theta > \sin \theta$.
Let ((a)	θ be an angle for which $\cos \theta + \sin \theta = a$ and $\cos \theta > \sin \theta$. By taking squares on both sides, find the value of $\sin 2\theta$ in terms of a .
Let ((a)	θ be an angle for which $\cos \theta + \sin \theta = a$ and $\cos \theta > \sin \theta$. By taking squares on both sides, find the value of $\sin 2\theta$ in terms of a .
Let ((a)	$ heta$ be an angle for which $\cos \theta + \sin \theta = a$ and $\cos \theta > \sin \theta$. By taking squares on both sides, find the value of $\sin 2\theta$ in terms of a . Expand $(\cos \theta - \sin \theta)^2$ and hence find the value of $\cos \theta - \sin \theta$ in terms of a .
Let ((a)	θ be an angle for which $\cos \theta + \sin \theta = a$ and $\cos \theta > \sin \theta$. By taking squares on both sides, find the value of $\sin 2\theta$ in terms of a . Expand $(\cos \theta - \sin \theta)^2$ and hence find the value of $\cos \theta - \sin \theta$ in terms of a .
Let ((a)	$ heta$ be an angle for which $\cos \theta + \sin \theta = a$ and $\cos \theta > \sin \theta$. By taking squares on both sides, find the value of $\sin 2\theta$ in terms of a . Expand $(\cos \theta - \sin \theta)^2$ and hence find the value of $\cos \theta - \sin \theta$ in terms of a .
Let ((a)	θ be an angle for which $\cos\theta+\sin\theta=a$ and $\cos\theta>\sin\theta$. By taking squares on both sides, find the value of $\sin 2\theta$ in terms of a . Expand $(\cos\theta-\sin\theta)^2$ and hence find the value of $\cos\theta-\sin\theta$ in terms of a .
Let ((a)	θ be an angle for which $\cos\theta+\sin\theta=a$ and $\cos\theta>\sin\theta$. By taking squares on both sides, find the value of $\sin 2\theta$ in terms of a . Expand $(\cos\theta-\sin\theta)^2$ and hence find the value of $\cos\theta-\sin\theta$ in terms of a .
Let ((a)	θ be an angle for which $\cos\theta+\sin\theta=a$ and $\cos\theta>\sin\theta$. By taking squares on both sides, find the value of $\sin 2\theta$ in terms of a . Expand $(\cos\theta-\sin\theta)^2$ and hence find the value of $\cos\theta-\sin\theta$ in terms of a .
Let ((a)	θ be an angle for which $\cos\theta+\sin\theta=a$ and $\cos\theta>\sin\theta$. By taking squares on both sides, find the value of $\sin 2\theta$ in terms of a . Expand $(\cos\theta-\sin\theta)^2$ and hence find the value of $\cos\theta-\sin\theta$ in terms of a .

8**.	[Max	kimum mark: 6]	[without GDC]	
	Let	heta be an angle for w	which $\cos \theta + \sin \theta = \frac{4}{3}$.	
	(a)	Find $\sin 2\theta$.		[3]
	(b)	Find $\cos 4\theta$.		[3]
9**.	[Max	kimum mark: 6]	[without GDC]	
	Let	heta be an angle for w	which $\cos \theta - \sin \theta = \frac{1}{2}$.	
	(a)	Find $\sin 2\theta$.		[3]
	(b)	Find $\cos 4\theta$.		[3]

A. Exam style questions (SHORT)

10. [Maximum mark: 4] **[without GDC]**

Given that $\sin \theta = \frac{1}{2}$, $\cos \theta = -\frac{\sqrt{3}}{2}$ and $0^{\circ} < \theta < 360^{\circ}$,

(a) find the value of θ ; [2]

(b) write down the **exact** value of $\tan \theta$. [2]

11. [Maximum mark: 5] *[without GDC]*

Given that $\sin x = \frac{1}{3}$, where x is an acute angle, find the **exact** value of

(a) $\cos x$; [3]

(b) $\cos 2x$. [2]

.....

.....

12. [Maximum mark: 6] [without GDC]

The following diagram shows a triangle ABC, where \hat{ACB} is 90°, $\hat{AB} = 3$, $\hat{AC} = 2$ and \hat{BAC} is $\hat{\theta}$.

(a) Show that $\sin 2\theta = \frac{4\sqrt{5}}{9}$. [3]

(b) Find the **exact** value of $\cos 2\theta$. [3]

13. [Maximum mark: 4] **[without GDC]**

If A is an obtuse angle in a triangle and $\sin A = \frac{5}{13}$, calculate the value of $\sin 2A$.

14.	[Max	kimum mark: 6] [without GDC]	
	Let	$p = \sin 40^{\circ}$, $q = \cos 110^{\circ}$. Give your answers to the following in terms of p and/or q	
	(a)	Write down an expression for (i) $\sin 140^\circ$; (ii) $\cos 70^\circ$.	[2]
	(b)	Find an expression for $\cos 140^{\circ}$.	[3]
	(c)	Find an expression for tan140°.	[1]
15.	[Max	kimum mark: 6] <i>[without GDC]</i>	
	(a)	Given that $\cos A = \frac{1}{3}$ and $0 \le A \le \frac{\pi}{2}$, find $\cos 2A$.	[3]
	/L- \	$\frac{3}{2}$, $\frac{2}{\pi}$ and $\frac{\pi}{2}$ and $\frac{\pi}{2}$	[0]
	(b)	Given that $\sin B = \frac{2}{3}$ and $\frac{\pi}{2} \le B \le \pi$, find $\cos B$.	[3]

16*. [Maximum mark: 7] *[without GDC]*

a)	Write down the value of $\tan \theta$
(b)	Find the value of (i) $\sin 2\theta$; (ii) $\cos 2\theta$.
	kimum mark: 7] <i>[without GDC]</i>
	kimum mark: 7] [without GDC] $f(x) = \sin^3 x + \cos^3 x \tan x, \frac{\pi}{2} < x < \pi.$
et a)	$f(x) = \sin^3 x + \cos^3 x \tan x, \frac{\pi}{2} < x < \pi.$ Show that $f(x) = \sin x.$
et a)	$f(x) = \sin^3 x + \cos^3 x \tan x$, $\frac{\pi}{2} < x < \pi$.
₋et a)	$f(x) = \sin^3 x + \cos^3 x \tan x, \frac{\pi}{2} < x < \pi.$ Show that $f(x) = \sin x.$
₋et a)	$f(x) = \sin^3 x + \cos^3 x \tan x, \frac{\pi}{2} < x < \pi.$ Show that $f(x) = \sin x$. Let $\sin x = \frac{2}{3}$. Show that $f(2x) = -\frac{4\sqrt{5}}{9}$.
₋et a)	$f(x) = \sin^3 x + \cos^3 x \tan x, \frac{\pi}{2} < x < \pi.$ Show that $f(x) = \sin x.$
₋et a)	$f(x) = \sin^3 x + \cos^3 x \tan x, \frac{\pi}{2} < x < \pi.$ Show that $f(x) = \sin x$. Let $\sin x = \frac{2}{3}$. Show that $f(2x) = -\frac{4\sqrt{5}}{9}$.
₋et a)	$f(x) = \sin^3 x + \cos^3 x \tan x, \frac{\pi}{2} < x < \pi.$ Show that $f(x) = \sin x$. Let $\sin x = \frac{2}{3}$. Show that $f(2x) = -\frac{4\sqrt{5}}{9}$.
₋et a)	$f(x) = \sin^3 x + \cos^3 x \tan x, \frac{\pi}{2} < x < \pi.$ Show that $f(x) = \sin x$. Let $\sin x = \frac{2}{3}$. Show that $f(2x) = -\frac{4\sqrt{5}}{9}$.
₋et a)	$f(x) = \sin^3 x + \cos^3 x \tan x, \frac{\pi}{2} < x < \pi.$ Show that $f(x) = \sin x$. Let $\sin x = \frac{2}{3}$. Show that $f(2x) = -\frac{4\sqrt{5}}{9}$.
₋et a)	$f(x) = \sin^3 x + \cos^3 x \tan x, \frac{\pi}{2} < x < \pi.$ Show that $f(x) = \sin x$. Let $\sin x = \frac{2}{3}$. Show that $f(2x) = -\frac{4\sqrt{5}}{9}$.

[without GDC]

18*. [Maximum mark: 6]

(a)	show that $\sin 15^\circ = \frac{\sqrt{2-\sqrt{3}}}{2}$;
(b)	find a similar expression for $\cos 15^{\circ}$.
ΓΜον	impure months El fruithout CDCI
	timum mark: 5] [without GDC] The that $\frac{\sin 4\theta (1-\cos 2\theta)}{\cos 2\theta (1-\cos 4\theta)} = \tan \theta$, for $0 < \theta < \frac{\pi}{2}$, and $\theta \neq \frac{\pi}{4}$.
	The that $\frac{\sin 4\theta (1-\cos 2\theta)}{\cos 2\theta (1-\cos 4\theta)}=\tan \theta$, for $0<\theta<\frac{\pi}{2}$, and $\theta\neq\frac{\pi}{4}$.
	We that $\frac{\sin 4\theta (1-\cos 2\theta)}{\cos 2\theta (1-\cos 4\theta)}=\tan \theta$, for $0<\theta<\frac{\pi}{2}$, and $\theta\neq\frac{\pi}{4}$.
	The that $\frac{\sin 4\theta (1-\cos 2\theta)}{\cos 2\theta (1-\cos 4\theta)}=\tan \theta$, for $0<\theta<\frac{\pi}{2}$, and $\theta\neq\frac{\pi}{4}$.
	The that $\frac{\sin 4\theta (1-\cos 2\theta)}{\cos 2\theta (1-\cos 4\theta)}=\tan \theta$, for $0<\theta<\frac{\pi}{2}$, and $\theta\neq\frac{\pi}{4}$.
	The that $\frac{\sin 4\theta (1-\cos 2\theta)}{\cos 2\theta (1-\cos 4\theta)}=\tan \theta$, for $0<\theta<\frac{\pi}{2}$, and $\theta\neq\frac{\pi}{4}$.

20.	[Maximum mark: 6]	[without GDC]
	Given that $2\sin 4x - 3$	$\sin 2x = 0$, and $\sin 2x \neq 0$, find the value of $\cos^2 x$.
21*.	[Maximum mark: 6]	[without GDC]
	Given that $a \sin 4x + b$	$0 \sin 2x = 0$, for $0 < x < \frac{\pi}{2}$, find an expression for $\cos^2 x$ in terms of
	a and b .	2

22*.	[Max	imum mark: 5]
	In tri	angle ABC, AB = 9 cm, AC = 12 cm, and \hat{B} is twice the size of \hat{C} .
	Find	the cosine of \hat{C} .
23*.	[Max	imum mark: 6] <i>[without GDC]</i>
	The	triangle ABC has an obtuse angle at B, BC = 10, $\hat{A} = x$ and $\hat{B} = 2x$.
	(a)	Find AC, in terms of $\cos x$.
	(b)	Given that the area of triangle ABC is $50 \cos x$, find angle \hat{C} .

B. Exam style questions (LONG)

24. [Maximum mark: 13] *[without GDC]*

Let ABC be the right-angled triangle, where \hat{C} = 90. The line (AD) bisects $B\hat{A}C$.

AC = 3 and AD = 5. as shown in the diagram.

(a)	Write down the value of cos DÂC.	[1]
(b)	Find cos BÂC.	[4]
(c)	Hence find AB.	[3]
(d)	Find sin B.	[2]
(d)	Find tan BAD.	[3]

25*. [Maximum mark: 10] *[with GDC]*

The area of the triangle shown below is $2.21 \,\mathrm{cm}^2$. The length of the shortest side is $x \,\mathrm{cm}$ and the other two sides are $3x \,\mathrm{cm}$ and $(x+3) \,\mathrm{cm}$.

- (a) Using the formula for the area of the triangle, write down an expression for $\sin \theta$ in terms of x.
- (b) Using the cosine rule, write down an expression for $\cos \theta$ in terms of x [2]

[2]

[6]

(c) (i) Using your answers to parts (a) and (b), show that,

$$\left(\frac{3x^2 - 2x - 3}{2x^2}\right)^2 = 1 - \left(\frac{4.42}{3x^2}\right)^2$$

- (ii) Hence find
 - (a) the possible values of x;
 - (b) the corresponding values of θ , **in radians**, using your answer to part (b) above.

26*. [Maximum mark: 20] *[with GDC]*

- (a) Let $y = -16x^2 + 160x 256$. Given that y has a maximum value, find
 - (i) the value of x giving the maximum value of y;
 - (ii) this maximum value of y.

The triangle XYZ has XZ = 6, YZ = x, XY = z as shown below. The perimeter of triangle XYZ is 16. [4]

- (b) (i) Express z in terms of x.
 - (ii) Using the cosine rule, express z^2 in terms of x and $\cos Z$.

(iii) Hence, show that
$$\cos Z = \frac{5x-16}{3x}$$
. [7]

Let the area of triangle XYZ be A.

- (c) Show that $A^2 = 9x^2 \sin^2 Z$. [2]
- (d) Hence, show that $A^2 = -16x^2 + 160x 256$. [4]
- (e) (i) Hence, write down the maximum area for triangle XYZ.
 - (ii) What type of triangle is the triangle with maximum area? [3]

[MAA 3.5] SIN, COS, TAN ON THE UNIT CIRCLE - IDENTITIES

27. [Maximum mark: 10] [with GDC]

The diagram below shows a plan for a window in the shape of a trapezium.

Three sides of the window are 2 m long. The angle between the sloping sides of the window and the base is θ , where $0 < \theta < \frac{\pi}{2}$.

(8	a) Show that th	e area of the windov	w is given by $v = 0$	$4\sin\theta + 2\sin 2\theta$.	[5]

(b)	Zoe wants a window to have an area of 5 m ² . Find the two possible values of θ .	[3]
-----	---	-----

(c)	John wants two windows which have the same area A but different values of θ .	
	Find all possible values for A .	[2]