ESPACIOS MUESTRALES Y EVENTOS

Definiciones

- 1. Un **experimento aleatorio** es aquel que proporciona diferentes resultados aun cuando se repita siempre de la misma manera.
- 2. El conjunto de los posibles resultados de un experimento aleatorio recibe el nombre de **espacio muestral** del experimento. Denotaremos el espacio muestral con la letra S.
- 3. Un evento es un subconjunto del espacio muestral de un experimento aleatorio

Ejemplos

1. Considere un experimento donde se seleccionan dos componentes y se clasifican conforme cumplen o no los requerimientos. Un resultado de este experimento es que el primero sea aceptable, y el segundo, no ; esto se denotará como AN. Así tenemos

$$S = \{AA, AN, NA, NN\}$$

donde $B = \{AN\}$ es un evento aleatorio del experimento

2. Se analizan muestras de policarbonato plástico para determinar su resistencia a las rayaduras y a los golpes.

Resistencia a los golpes

		Alta	baja
	Alta	40	4
Resistencia a las rayaduras			
	Baja	2	3

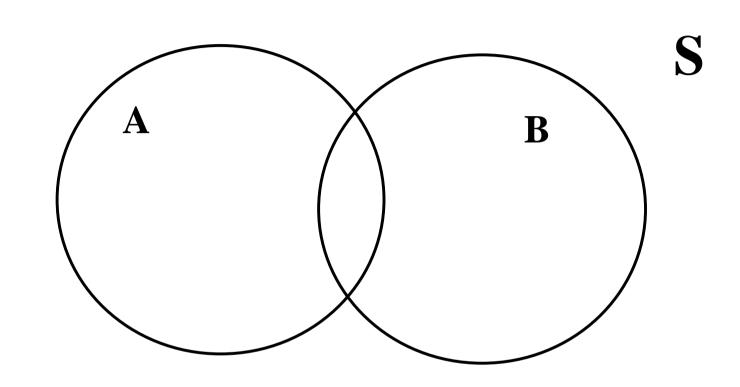
Sean A: el evento "la muestra tiene una alta resistencia a los golpes" y B: el evento "la muestra tiene una alta resistencia a las rayaduras". Determine el número de muestras en $A\cap B,\,A^c\,$ y en $A\cup B$.

Solución

El evento $A\cap B$ está formado por 40 muestras para las que la resistencia a las rayuduras y a los golpes son altas.

El evento A^c contiene siete muestras para las que la resistencia a los golpes es baja .

El evento $A \cup B$ está formado por las 46 muestras en las que la resistencia a las rayaduras o a los golpes (o a ambos) es alta.

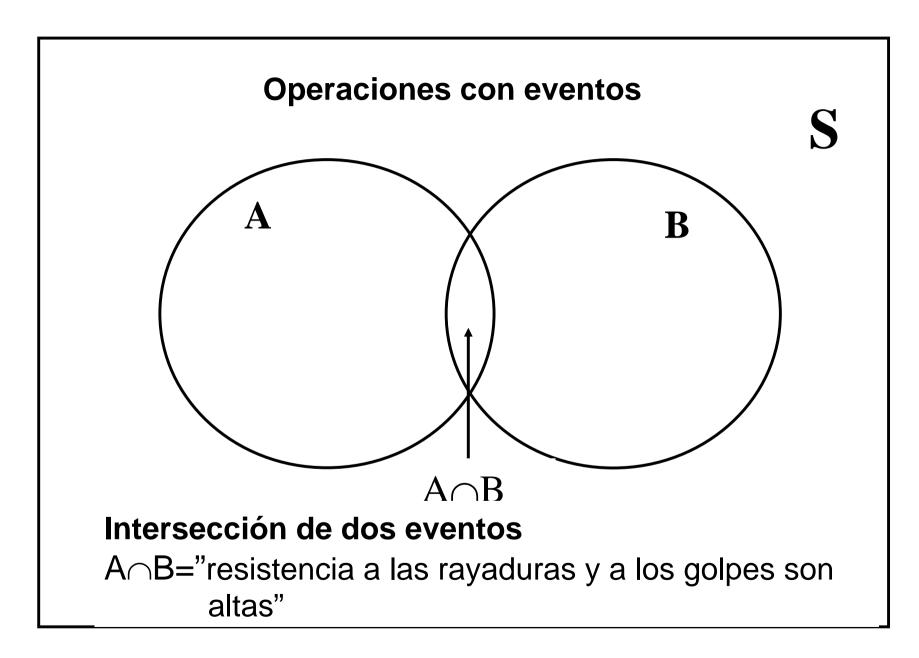


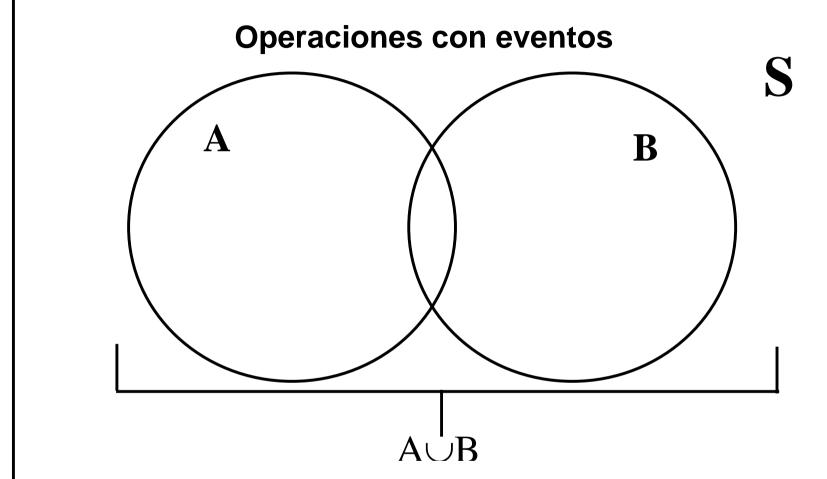
Eventos:

A="alta resistencia a los golpes"

B="alta resistencia a las rayaduras"

S=espacio muestral





Unión entre dos eventos La resistencia a las rayaduras o a los golpes es alta

Operaciones con eventos

 \mathbf{A}

A

Complemento de un evento

Ejemplo: S="Humano",

A="Masculino", A^c="Femenino"

Definiciones de eventos especiales

Ø se llama evento nulo
 S se llama evento seguro

Ejemplo:
$$A \cap A^c = \emptyset$$
 y $A \cup A^c = S$

2. Eventos mutuamente excluyentes $(A \cap B = \emptyset)$.

En el ejemplo1 tenemos $S = \{AA, AN, NA, NN\}$

$$Sean E_1 = \{AA, AN\}, E_2 = \{NA\} y E_3 = \{AN, NN\}$$

 E_1 y E_2 son mutuamente excluyentes

 E_2 y E_3 son mutuamente excluyentes

 E_1 y E_3 no son mutuamente excluyentes

En efecto:

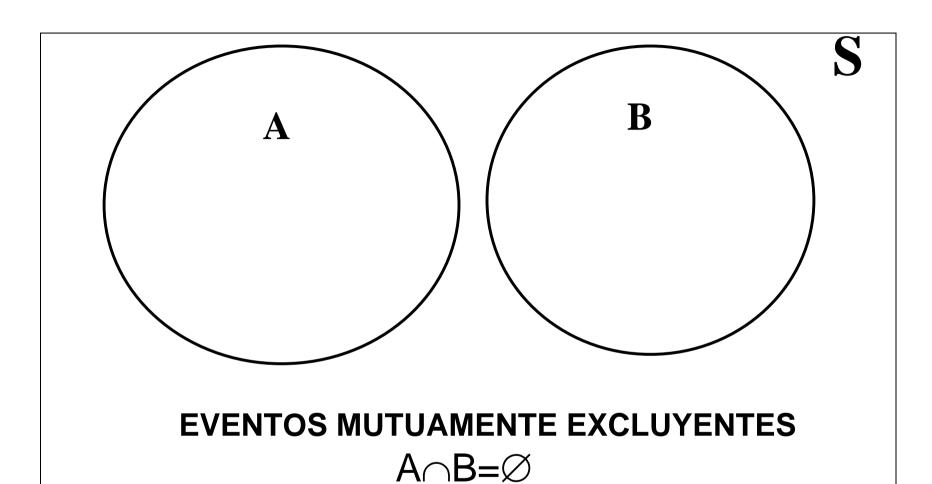
$$E_1 \cap E_2 = \emptyset$$

$$E_2 \cap E_3 = \emptyset$$

$$E_{1} \cap E_{2} = \emptyset$$

$$E_{2} \cap E_{3} = \emptyset$$

$$E_{1} \cap E_{3} = \{AN\}$$



Ejemplo:A="Masculino" B="Femenino"

AXIOMAS

Axioma 1 Para cualquier evento A, $P(A) \ge 0$

Axioma 2 P(S) = 1

Axioma 3 $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$, siempre que $A_i \cap A_j = \phi \quad \forall i \neq j$

INTERPRETACIONES DE LA PROBABILIDAD

Definición (Frecuentista)

Si un experimento es repetido n veces bajo las mismas condiciones, y el evento A ocurre m veces, entonces la probabilidad que "el evento A ocurra", denotada por P(A) es

$$P(A) = \frac{m}{n}$$

Ejemplo:

Si A="Sale 1 en el lanzamiento de un dado correcto" entonces $P(A) = \frac{1}{6}$.

Propiedades básicas

Imposible P(A)=0

Seguro P(A)=1

En general $0 \le P(A) \le 1$

Espacio muestral P(S)=1

Evento nulo $P(\emptyset)=0$

Reglas importantes

- 1. En general $0 \le P(A) \le 1$ para todo evento A
- 2. Para cualquier par de eventos A, B se tiene

$$P(A \cup B)=P(A)+P(B)-P(A \cap B)$$

Observación si $P(A \cap B)=0$, entonces tenemos

$$P(A \cup B) = P(A) + P(B)$$

Está es conocida como regla aditiva.

3. Evento complementario. Si A^c es el evento complementario de A, entonces

$$P(A^c) = 1 - P(A)$$

En efecto, como
$$A \cup A^c = S$$
 entonces $P(A \cup A^c) = P(S)$ (1)

Por otro lado tenemos que
$$P(A \cap A^c) = 0$$
 (2)

Luego usando (1), la regla 2 y (2) tenemos $P(A) + P(A^c) = 1$

PROBABILIDAD CONDICIONAL

La **probabilidad condicional** de un evento B dado un evento A, denotado por P(B|A), es

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

Observaciones 1. $P(A \cap B) = P(A)P(B|A)$

2.
$$P(A \cap B) = P(B)P(A|B)$$

En el ejemplo 2 calcular e interpretar las siguientes probabilidades

1. *P*(*A*)

2. *P*(*B*)

3. $P(A^C)$

4. $P(B^C)$

5. $P(A \cap B)$

6. $P(A \cup B)$

7. $P(A^C \cap B)$

8. $P(A \cap B^C)$

9. P(A|B)

10. P(B|A)

Ejemplo 3: Un lote de 500 contenedores para jugo de naranja congelado contiene cinco que están defectuosos.

- A) Se toman del lote dos al azar, sin reemplazo.
- i) ¿ Cuál es la probabilidad de que el segundo contenedor sea defectuoso si el primero lo fue?
- ii) ¿ Cuál es la probabilidad de que los dos contenedores sean defectuosos?
- iii) ¿ Cuál es la probabilidad de que ambos contenedores sean aceptables?
- B) Del lote se escogen al azar tres contenedores, sin reemplazo.
- i) ¿Cuál es la probabilidad de que el tercero sea defectuoso, dado que el primero y el segundo son defectuosos?
- ii) ¿Cuál es la probabilidad de que el tercero sea defectuoso dado que el primero es defectuoso y el segundo aceptable?
- iii) ¿Cuál es la probabilidad de que los tres sean defectuosos?

EVENTOS INDEPENDIENTES

Se dice que dos eventos son **independientes** si , y sólo si , cualquiera de las siguientes proposiciones es verdadera.

1.
$$P(A|B) = P(A)$$

2.
$$P(B|A) = P(B)$$

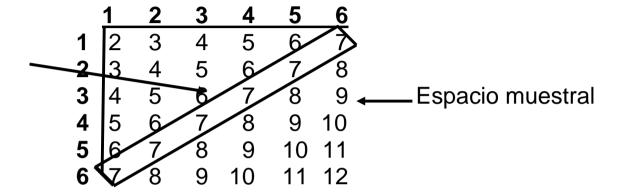
3.
$$P(A \cap B) = P(A)P(B)$$

Observación : la proposición 3 se llama regla multiplicativa

Ejemplo

Lanzar un dado correcto dos veces

A= "La suma es 7"



Calcular la probabilidad del evento A="La suma de las dos caras es 7".

Los eventos son mutuamente excluyentes, entonces

$$P(A)=P[(1,6)\cup(2,5)\cup...\cup(6,1)]=P(1,6)+P(2,5)+...+P(6,1)$$
 por la regla aditiva.

Por otro lado tenemos: $P(1,6)=P(1\cap 6)=P(1)P(6)=(1/6)(1/6)=1/36$, por la regla multiplicativa

Así, P("Sum = 7")=
$$1/36+1/36+...+1/36=6/36$$
.

Teorema de Bayes

Supóngase que los eventos $A_1,A_2,...,A_n$ constituyen una partición de S , entonces, $P(A_i|B)$ es dado por

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + ... + P(B|A_n)P(A_n)}$$

Ejemplo Para la fabricación de un gran lote de artículos similares se utilizaron tres máquinas M1, M2 y M3. Supóngase que el 20% de los artículos fueron fabricados por la máquina M1, el 30% por la máquina M2 y el 50% por la máquina M3. Supóngase además que el 1% de los artículos fabricados por la máquina M1 son defectuosos y el 2% de los artículos fabricados por la máquina M2 son defectuosos y que el 3% de los artículos fabricados por la máquina M3 son defectuosos. Por último, supóngase que se selecciona al azar uno de los artículos del lote y que resulta ser defectuoso. Calcular la probabilidad de que este artículo haya sido fabricado por la máquina M2. R (0.26)