A cubic equation has the form
$a x^{3}+b x^{2}+c x+d$ It must have the term in x^{3} or it would not be cubic (and so a cannot be equal to 0), but any or all of b, c and d can be zero.

For instance, $8 x^{3}+2 x^{2}+3 x+5,5 x^{3}+2 x+6$, and $9 x^{3}+7$ are all cubic equations. Just as a quadratic equation may have two real roots, so a cubic equation has possibly three. But unlike a quadratic equation which may have no real solution, a cubic equation always has at least one real root.

If a cubic does have three roots, two or even all three of them may be repeated.

Suppose we wish to solve the equation $x^{3}+8 x^{2}+19 x+12$ This equation can be factorized to give $(x+1)(x+3)(x+4)=0$

This equation has three real roots, all different the solutions are $x=-1, x=-3$ and $x=-4$.

Here is the graph of our equation

Notice how the graph is touching the x-axis when $x=-4,-3$, and -1 .
Which explains the roots.

HOW TO SOLVE CUBIC EQUATIONS!!

There are many ways to solve a cubic equation

1) Factor out an x
2) Long division

INTRODUCE Quartic equations

A quartic equation, or equation of the fourth degree, is an equation that equates a quartic polynomial to zero, of the form
$a x^{4}+b x^{3}+c x^{2}+d x+e$
where $a \neq 0$.

Here is a graph that illustrates a quartic equation

$$
x^{4}+3 x^{3}+2 x^{2}+5 x+1
$$

In the powerpoint, we have created, we will go into details on how to graph and solve cubic and quartic equations.

