INTERNATIONAL BACCALAUREATE

Mathematics: analysis and approaches

MAA

EXERCISES [MAA 2.6] TRANSFORMATIONS

Compiled by Christos Nikolaidis

O. Practice question

1. [Maximum mark: 9] **[without GDC]**The point A(1, 0.5) lies on the curve y = f(x). Write down the coordinates of the corresponding point under the following transformations

y = f(x) + 5	(1, 5.5)	y = f(x+5)
y = f(x) - 5		y = f(x - 5)
y = 5f(x)		y = f(5x)
y = f(x)/5		y = f(x/5)
y = -f(x)		y = f(-x)

2. [Maximum mark: 12] **[without GDC]**

The point A(-1, 3) lies on the curve y = f(x).

(a) Write down the coordinates of the corresponding point under the following transformations

y = f(x) + 3	(-1, 6)	y = f(x+3)	
y = f(x) - 3		y = f(x-3)	
y = 3f(x)		y = f(3x)	
y = f(x)/3		y = f(x/3)	
y = -f(x)		y = f(-x)	

[9]

(b)	Find the coordinates of the corresponding point under $y = 2 f(x-3)+4$.		

3. [Maximum mark: 10] [without GDC]

The graph of y = f(x) is shown in the diagram.

On each of the following diagrams draw the required graph.

(a)
$$y = f(x) + 1$$

(b)
$$y = f(x) - 2$$

[1+1]

[1+1]

[1]

(c)
$$y = 2f(x)$$

(d)
$$y = \frac{1}{2} f(x)$$

(e)
$$y = -f(x)$$

[1]

[1]

[1]

[1]

[1]

$$(h) y = f(3x)$$

(i)
$$y = f\left(\frac{x}{2}\right)$$

4*. [Maximum mark: 11] [without GDC]

The sequence of transformations from y = f(x) to y = 2f(3x) + 4 is given below

f(x)	original	
2f(x)	vertical stretch with s.f. 2	
2f(3x)	horizontal stretch with s.f. 1/3 (i.e. shrink))	
2f(3x)+4	vertical translation 4 units up	

Describe similarly the sequence of transformations, in a correct order, for the following functions

(a) -f(x-2)+5

[3]

f(x)	original

(b) -3f(x+2)-1

[4]

f(x)	original

(c) f(2x-10)

[2]

f(x)	original

(d) f(2(x-5))

[2]

f(x)	original

A. Exam style questions (SHORT)

5. [Maximum mark: 6] [without GDC]

The graph of y = f(x) is shown in the diagram.

(a) On each of the following diagrams draw the required graph,

(i) y = 2f(x);

(ii) y = f(x-3).

(b) The point A (3, -1) is on the graph of f. The point A' is the corresponding point on the graph of y = -f(x) + 1.

Find the coordinates of A'. [2]

[4]

6. [Maximum mark: 5] **[without GDC]**

The following diagram shows part of the graph of f(x)

Consider the five graphs in the diagrams labelled A, B, C, D, E below.

(a) Which diagram is the graph of

(i)
$$f(x+2)$$
?

(ii)
$$-f(x)$$
?

(iii)
$$f(-x)$$

[3]

[2]

(b) Write down the expression for each of the two remaining graphs

7. [Maximum mark: 10] [without GDC]

The graph of the function y = f(x), $0 \le x \le 4$, is shown below.

(a) Write down the value of (i) f(1) (ii) f(3).

- [2]
- (b) On the diagrams below, draw the graphs of y = 3f(-x) and y = f(2x). [4]
- (c) Write down the domain and the range of y = 3f(-x) and y = f(2x). [4]

	y = f(x)	y = 3f(-x)	y = f(2x)
Domain	$0 \le x \le 4$		
Range	$0 \le y \le 1$		

8. [Maximum mark: 5] [without GDC]

The diagram below shows the graph of a function f(x), for $-2 \le x \le 4$.

(a) Let h(x) = f(-x). Sketch the graph of h on the grid below.

[2]

(b) Let $g(x) = \frac{1}{2}f(x-1)$. The point A(3, 2) on the graph of f is transformed to the point P on the graph of g. Find the coordinates of P.

[3]

9. [Maximum mark: 6] [without GDC]

Consider the graph of f shown below.

On the **same** grid sketch the graph of y = f(-x). (a)

[2]

The following four diagrams show **images** of f under different transformations.

Diagram A

Diagram B

Diagram C

Diagram D

Complete the following table. (b)

[2]

Description of transformation	Diagram letter
Horizontal stretch with scale factor 1.5	
Maps $f(x)$ to $f(x)+1$	

Give a full geometric description of the transformation in Diagram A. (c)

[2]

10. [Maximum mark: 8] [with GDC]

Let $f(x) = \frac{1}{3}x^3 - x^2 - 3x$. Part of the graph of f is shown below.

There is a maximum point at A and a minimum point at B(3, -9).

(a) Write down the coordinates of A.

[2]

[6]

- (b) Write down the coordinates of
 - (i) the image of B after a reflection in the *y*-axis;
 - (ii) the image of B after a translation by -2 units in the x-direction and 5 units in the y-direction).
 - (iii) the image of B after a reflection in the *x*-axis followed by a horizontal stretch with scale factor $\frac{1}{2}$.

11. [Maximum mark: 10] [without GDC]

The graph of a function f is shown in the diagram below.

(a) On the same diagram sketch the graph of y = -f(x).

[2]

- (b) Let g(x) = f(x+3).
 - (i) Find g(-3)
 - (ii) Describe **fully** the transformation that maps the graph of f to the graph of g [4]
- (c) Write down in the table below the domain and the range for each function:

	y = f(x)	y = -f(x)	y = f(x+3)
Domain	$-1 \le x \le 4$		
Range	$-4 \le y \le 0.5$		

[4]

12. [Maximum mark: 4] [without GDC]

The following diagram shows the graph of y = f(x). It has minimum and maximum points at (0, 0) and $(1, \frac{1}{2})$.

(a) On the same diagram, draw the graph of $y = f(x-1) + \frac{3}{2}$.

(b) What are the coordinates of the minimum and maximum points of $y = f(x-1) + \frac{3}{2}$?

13. [Maximum mark: 6] [without GDC]

The sketch shows part of the graph of y = f(x) which passes through the points A(-1, 3), B(0, 2), C(I, 0), D(2, 1) and E(3, 5).

A second function is defined by g(x) = 2f(x-1).

(a) Calculate g(0), g(1), g(2) and g(3).

[3]

(b) On the same axes, sketch the graph of the function g(x).

[3]

14. [Maximum mark: 8] *[without GDC]*

Let f(x) = 2x + 1.

- (a) On the grid below draw the graph of f(x) for $0 \le x \le 2$.
- (b) Let g(x) = f(x+3) 2. On the grid below draw the graph of g(x) for $-3 \le x \le -1$. [4]

(c) Write down the range for each function:

	y = f(x)	y = g(x)
Domain	$0 \le x \le 2$	$-3 \le x \le -1$
Range		

[2]

[2]

15. [Maximum mark: 5] *[without GDC]*

The diagrams show how the graph of $y = x^2$ is transformed to the graph of y = f(x) in three steps.

In the table below

(a) Give the equation of the curve for each diagram

[3]

(b) Write down the coordinates of the vertex at each step

[2]

	Equation of the curve	Vertex
	$y = x^2$	(0,0)
(i)		
(ii)		
(iii)		

16*.	[Max	rimum mark: 6]	
	Let	$f(x) = x^2$ and $g(x) = 2(x-1)^2$.	
	(a)	The graph of g can be obtained from the graph of f using two transformations.	
		Give a full geometric description of each of the two transformations.	[2]
	(b)	The graph of g is translated by the vector $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$ (i.e. 3 units in the x -direction and	
		-2 units in the y -direction) to give the graph of h . The point (-1 , 1) on the graph	
		of f is translated to the point P on the graph of h . Find the coordinates of P.	[4]
17.	[Max	kimum mark: 6] <i>[without GDC]</i>	
17.	-	simum mark: 6] <i>[without GDC]</i> $f(x) = 3x^2$. The graph of f is translated 1 unit to the right and 2 units down.	
17.	Let		
17.	Let	$f(x) = 3x^2$. The graph of f is translated 1 unit to the right and 2 units down.	[2] [2]
17.	Let garden (a)	$f(x) = 3x^2$. The graph of f is translated 1 unit to the right and 2 units down. graph of g is the image of the graph of f after this translation. Write down the coordinates of the vertex of the graph of g . Express g in the form $g(x) = 3(x - p)^2 + q$.	
17.	Let The (a) (b)	$f(x) = 3x^2$. The graph of f is translated 1 unit to the right and 2 units down. graph of g is the image of the graph of f after this translation. Write down the coordinates of the vertex of the graph of g . Express g in the form $g(x) = 3(x-p)^2 + q$. graph of f is the reflection of the graph of f in the f -axis.	[2]
17.	Let garden (a)	$f(x) = 3x^2$. The graph of f is translated 1 unit to the right and 2 units down. graph of g is the image of the graph of f after this translation. Write down the coordinates of the vertex of the graph of g . Express g in the form $g(x) = 3(x - p)^2 + q$.	
17.	Let The (a) (b)	$f(x) = 3x^2$. The graph of f is translated 1 unit to the right and 2 units down. graph of g is the image of the graph of f after this translation. Write down the coordinates of the vertex of the graph of g . Express g in the form $g(x) = 3(x-p)^2 + q$. graph of f is the reflection of the graph of f in the f -axis.	[2]
17.	Let The (a) (b)	$f(x) = 3x^2$. The graph of f is translated 1 unit to the right and 2 units down. graph of g is the image of the graph of f after this translation. Write down the coordinates of the vertex of the graph of g . Express g in the form $g(x) = 3(x-p)^2 + q$. graph of f is the reflection of the graph of f in the f -axis.	[2]
17.	Let The (a) (b)	$f(x) = 3x^2$. The graph of f is translated 1 unit to the right and 2 units down. graph of g is the image of the graph of f after this translation. Write down the coordinates of the vertex of the graph of g . Express g in the form $g(x) = 3(x-p)^2 + q$. graph of f is the reflection of the graph of f in the f -axis.	[2]
17.	Let The (a) (b)	$f(x) = 3x^2$. The graph of f is translated 1 unit to the right and 2 units down. graph of g is the image of the graph of f after this translation. Write down the coordinates of the vertex of the graph of g . Express g in the form $g(x) = 3(x-p)^2 + q$. graph of f is the reflection of the graph of f in the f -axis.	[2]
17.	Let The (a) (b)	$f(x) = 3x^2$. The graph of f is translated 1 unit to the right and 2 units down. graph of g is the image of the graph of f after this translation. Write down the coordinates of the vertex of the graph of g . Express g in the form $g(x) = 3(x-p)^2 + q$. graph of f is the reflection of the graph of f in the f -axis.	[2]
17.	Let The (a) (b)	$f(x) = 3x^2$. The graph of f is translated 1 unit to the right and 2 units down. graph of g is the image of the graph of f after this translation. Write down the coordinates of the vertex of the graph of g . Express g in the form $g(x) = 3(x-p)^2 + q$. graph of f is the reflection of the graph of f in the f -axis.	[2]

18. [Maximum mark: 6] [without GDC]

The diagram shows a sketch of part of the graph of $f(x) = x^2$ and a sketch of part of the graph of $g(x) = -x^2 + 6x - 13$.

- (a) Write down the coordinates of the maximum point of y = g(x)
- (b) Describe fully each of the transformations, which together map the graph of y = f(x) onto the graph of y = g(x) in a correct order,

19. [Maximum mark: 6] [with / without GDC]

(a) Express
$$y = 2x^2 - 12x + 23$$
 in the form $y = 2(x - c)^2 + d$.

The graph of $y = x^2$ is transformed into the graph of $y = 2x^2 - 12x + 23$ by the transformations

a vertical stretch with scale factor k **followed by** a horizontal translation of p units **followed by** a vertical translation of q units.

[3]

(b)	Write down the value of	(i)	<i>k</i> ;	(ii)	<i>p</i> ;	(iii)	q .	[3]

20. [Maximum mark: 4] *[without GDC]*

The diagram shows parts of the graphs of $y = x^2$ and $y = 5 - 3(x - 4)^2$.

The graph of $y = x^2$ may be transformed into the graph of $y = 5 - 3(x - 4)^2$ by these transformations.

A reflection in the line y = 0 followed by a vertical stretch with scale factor k followed by a horizontal translation of p units a vertical translation of q units.

Write	down the value of	(i)	<i>k</i> ;	(ii)	<i>p</i> ;	(iii)	q.

21. [Maximum mark: 6] *[without GDC]*

A translation with vector $\begin{pmatrix} h \\ k \end{pmatrix}$ implies a shift by h units horizontally and k units vertically.

The following diagram shows part of the graph of $f(x) = 5 - x^2$ with vertex V(0, 5).

Its image y = g(x) after a translation with vector $\begin{pmatrix} h \\ k \end{pmatrix}$ has vertex T(3, 6).

- (a) Write down the value of (i) h (ii) k
- (b) Write down an expression for g(x).
- (c) On the same diagram, sketch the graph of y = g(-x)

.....

22. [Maximum mark: 6] [with / without GDC]

The quadratic function f is defined by $f(x) = 3x^2 - 12x + 11$.

- (a) Write f in the form $f(x) = 3(x-h)^2 + k$.
- (b) The graph of f is translated 3 units in the positive x-direction and 5 units in the positive y-direction. Find the function g for the translated graph, giving your answer in the form $g(x) = 3(x p)^2 + q$.

23. [Maximum mark: 6] [without GDC]

The diagrams below show the graph of y = f(x) which passes through the points A, B, C and D.

Sketch, indicating clearly the images of A, B, C and D, the graphs of

(a)
$$y = f(x-4)$$
; [2]

(b)
$$y = f(-3x)$$
; [4]

24.	[Maximum mark: 6]			
	The graph of $y = 2x^2$	+4x+7 is translated using	ng the vector $egin{pmatrix} 2 \ -1 \end{pmatrix}$. Find the equa	ation of
	the translated graph, g	giving your answer in the	form $y = ax^2 + bx + c$.	
25.	[Maximum mark: 6]	[without GDC]		
	The graph of the funct	$f(x) = 2x^3 - 3x^2 + x$	+1 is translated to its image, $g(x)$) , by
	the vector $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Write	e $g(x)$ in the form $g(x)$	$=ax^3+bx^2+cx+d.$	

B. Exam style questions (LONG)

26.

[Max	ximum mark: 15] <i>[with GDC]</i>	
Let	$f(x) = 3(x+1)^2 - 12.$	
(a)	Show that $f(x) = 3x^2 + 6x - 9$.	[2]
(b)	For the graph of f	
	 (i) write down the coordinates of the vertex; (ii) write down the equation of the axis of symmetry; (iii) write down the <i>y</i>-intercept; 	
	(iv) find both x -intercepts.	[8]
(c)	Hence sketch the graph of f .	[2]
(d)	Let $g(x) = x^2$. The graph of f may be obtained from the graph of g by the two	
	transformations: a stretch of scale factor t in the y -direction	
	followed by a translation of $\binom{p}{q}$.	
	Find $\binom{p}{q}$ and the value of t .	[3]

27*.	[Max	imum mark: 12] <i>[without GDC]</i>	
	Let j	$f(x) = x^2 + 4$ and $g(x) = x - 1$.	
	(a)	Find $(f \circ g)(x)$.	[2]
	The o	graph of $(f\circ g)$ is translated to the graph of h by 3 units horizontally and -1 unit cally.	
	(b)	Find the coordinates of the vertex of the graph of h .	[3]
	(c)	Show that $h(x) = x^2 - 8x + 19$.	[2]
	(d)	The line $y = 2x - 6$ is a tangent to the graph of h at the point P. Find the x -coordinate of P.	[5]

28**. [Maximum mark: 10] [without GDC]

The diagrams below show the graph of $y_1 = f(x)$.

The x-axis is a tangent to f(x) at x = m and f(x) crosses the x-axis at x = n.

(a) On the diagram below sketch the graph of $y_2 = f(2x)$ and indicate the coordinates of the points of intersection of y_2 with the x-axis.

[3]

(b) On the diagram below sketch the graph of $y_3 = f(x-k)$, where $0 \le k \le n-m$ and indicate the coordinates of the points of intersection of y_3 with the x-axis.

[3]

(c) Solve the equations (giving the solutions in terms of m and n)

(i)
$$f(2x) = 0$$
; (ii) $f(x-3) = 0$; (iv) $f(2x-3) = 0$. [4]