1. First, we can create a right triangle. Our hypotenuse will be side b, and the other bases will be $2 \mathrm{a}-\mathrm{b}$ and $2 \sqrt{a b}-\mathrm{a}$. The radius of the small circle is named a and the radius of the larger circle is named b . When we plug these values into the Pythagorean Theorem ($a^{2}+b^{2}=c^{2}$) we would have the following: $(2 \sqrt{a b}-a)^{2}+(2 a-b)^{2}=(b)^{2}$. By foiling $(2 \sqrt{a b}-a)^{2}$ we get 4ab-4av $\sqrt{a b}+a^{2}+$ and by foiling $(2 a-b)^{2}$ we get $4 a^{2}-4 a b+b^{2}$. So, our new equation would read $4 \mathrm{ab}-4 a \sqrt{a b}+a^{2}+4 a^{2}-4 \mathrm{ab}+b^{2}=b^{2}$. We then combine like terms to arrive at $5 a^{2}-4 \mathrm{a} \sqrt{a b}+b^{2}=b^{2}$. When we plug in 16 for a and 25 for b , the equation equals 0 . Since, this is a ratio, if $a=32$ then $b=50$ in order to keep the same ratio.
